
 

 

 
Abstract — Network protocol system fingerprinting has been 
recognized as an important issue and a major threat to network 
security. Prevalent works rely largely on human experiences and 
insight of the protocol system specifications and implementations. 
Such ad-hoc approaches are inadequate in dealing with large 
complex protocol systems. In this paper we propose a formal 
approach for automated protocol system fingerprinting analysis 
and experiment. Parameterized Extended Finite State Machine is 
used to model protocol systems, and four categories of 
fingerprinting problems are formally defined. We propose and 
analyze algorithms for both active and passive fingerprinting and 
present our experimental results on Internet protocols. 
Furthermore, we investigate protection techniques against 
malicious fingerprinting and discuss the feasibility of two defense 
schemes, based on the protocol and application scenarios. 

 
Keywords: protocol system; network security; 

fingerprinting; testing; extended finite state machine; online 
minimization 

I. INTRODUCTION 
Network protocol system fingerprinting refers to the process 

of identifying specific features of a network protocol 
implementation by analyzing its input/output behaviors. Usually 
these identifiable features may reveal specific protocol versions, 
vender information, and configurable parameters, and can be 
stored as the “fingerprint” for matching and comparison. While 
the original purpose was to identify remotely what Operating 
System is running on the target host, the applications of 
fingerprinting techniques nowadays cover a much wider range 
of areas. It has been shown by the prevalent fingerprinting tools 
that implementations of most key Internet protocols, such as 
ICMP, TCP, TELNET and HTTP, can all be targets of 
fingerprinting [4] [18] [22]. It is interesting to note that 
fingerprinting techniques by themselves are not necessarily 
associated with unwelcome behaviors. Network administrators 
can use remote fingerprinting to collect information to facilitate 
management, and IDS (Intrusion Detection System) can capture 
the abnormal behaviors of attackers or worms by analyzing their 
fingerprints [20].  

On the other hand, fingerprinting has been recognized as one 
of the major threats to cyber-infrastructure security [4] [21]. 
The main concern is that successful fingerprinting may facilitate 
attacks, which exploit the vulnerability of certain 

implementations. In practice, different protocols on one host 
usually have relations (e.g. from same vendor), which will give 
attackers more information once the identity of any protocol 
deployment is revealed. For instance, most reported web server 
security flaws are operating system specific, while an operating 
system distribution is also correlated with a specific TCP stack 
implementation. Therefore, it is convenient for the attacker to 
identify operating system version first using an active TCP 
fingerprinting (without involving web server), and then launch 
the more sophisticated attack on the target web server. Since 
fingerprinting is lightweight and can be obtained without 
triggering the Intrusion Detection System, attackers usually 
prefer to identify the target implementation by fingerprinting 
first in order to devise damaging attacks. Beside the malicious 
intruders, commercial advertisers can take advantage of the 
fingerprints of the hosts of their interest. This is undesirable for 
some sensitive systems because such implementation details are 
proprietary.  

The presence of protocol system fingerprint is due to a basic 
fact that most network protocols are not specified completely 
and deterministically [14]. As a result, there is no unique 
conforming implementation. This nondeterminism in protocol 
specification can be from explicit statement of optional features 
and designer's choices, or from the unspecified behaviors under 
certain circumstances. In the latter case the implementer has the 
freedom to decide the response to an unspecified input, which, 
for instance, could possibly be an error message or no response 
at all. Given different valid implementations, the goal of 
fingerprinting is to identify one of them by analyzing the 
input/output behaviors of an implementation, which is often 
modeled by a “black-box”. Existing methods for obtaining 
fingerprints can be active or passive [19]. In active 
fingerprinting process the tester (attacker or administrator) 
chooses predetermined input sequences for probing the target 
host, whereas in passive fingerprinting the tester can only 
observe a trace of input/output messages from the target host 
without disrupting its normal operations. In general, active 
approaches are more effective because the tester is capable of 
selecting “distinguishing” inputs based on the knowledge of the 
protocol specifications. However, passive approach has the 
advantage that the target host is completely unaware that it is 
being fingerprinted. 

Network Protocol System Fingerprinting  
- A Formal Approach 

 
Guoqiang Shu and David Lee 

Department of Computer Science and Engineering, The Ohio State University  
{shug, lee}@cse.ohio-state.edu 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

1-4244-0222-0/06/$20.00 (c)2006 IEEE



 

 

Most of the recent work about protocol fingerprinting has 
been focused on the development of software tools for both 
retrieving the fingerprint (actively and passively) and defending 
against malicious fingerprinting. While many such tools have 
demonstrated significant practical value, these ad-hoc 
approaches have certain limitations. First, as the number of 
network protocols keeps increasing, we need a general method 
that is suitable for analyzing most, if not all, of them. Second, 
most of the current fingerprinting methods use fairly short 
probing sequences; these simple fingerprints could be erased 
easily. As we will see in section IV, in general, discovering a 
fingerprint may need an arbitrarily long probing sequence. 
Third, future protocol specifications may become too complex 
for human engineers to analyze manually, and will need 
automated methods and tools. Finally, with the current ad-hoc 
fingerprinting methods it is difficult to conduct rigorous proof 
about the validity and effectiveness of the fingerprinting 
experiments. 

We propose a formal approach for the design, analysis and 
experiments of protocol fingerprinting. To the best of our 
knowledge this is the first published work of applying formal 
methods to protocol fingerprinting. The following are our main 
contributions. We introduce parameterized extended finite state 
machine (PEFSM) to formally model protocol specification and 
candidate conforming implementations. With the classical finite 
state machine theory this formal approach contributes to a 
deeper understanding of the nature of protocol fingerprinting. 
We formally define and categorize fingerprinting problems. 
Given a finite set of possible candidate implementations 
modeled by a set of deterministic PEFSMs, we present efficient 
algorithms for active and passive fingerprinting, and analyze 
their complexity. Particularly, for active fingerprinting, we 
design and implement efficient algorithms based on separating 
sequences of different implementations, using an on online 
minimization process. This approach does not require complete 
expansion of PEFSM model and has optimal complexity. We 
report our results on operating system fingerprinting and TCP 
congestion control scheme fingerprinting experiments. We also 
consider countermeasures against malicious fingerprinting. We 
define a formal model based on the I/O trace of implementations 
and discuss the feasibility of scrubbing and camouflage 
approaches for hiding protocol system fingerprints against 
malicious attackers. 

II. RELATED WORKS 
Protocol fingerprinting works can be dated back to the simple 

forms of remote operating system (OS) detection. Its task is to 
determine which OS is running on a remote host by exploiting 
the unique behavior of various protocols such as TCP and 
ICMP. Nmap [22] is one of the most popular OS fingerprinting 
tools. It provides nine special testing packets to determine more 
than 1000 different versions of operating system. Some other 
tools apply probabilistic approach to active or passive OS 
fingerprinting [3] [4], producing a guess rather than a definite 
conclusion. The author of [18] provides an introduction to 

identifying popular web servers using an HTTP fingerprinting 
tool. Its idea of requesting a special (nonexistent) webpage and 
observing the error message is very similar to Nmap, and in 
general this could be applied to any application level protocols 
as well [1].   

While OS fingerprinting relies largely on analyzing the 
behavior of a TCP stack, TCP fingerprinting itself has been a 
very popular topic [5] [16]. Identifying certain parameters of 
TCP implementations, such as initial congestion window (ICW) 
and retransmission timeout (RTO) value can contribute to 
monitoring and measurement of network performances. One 
interesting problem is to determine the congestion control 
algorithm implemented on a TCP stack. In [15] the design of 
TBIT tool is presented, which is effective in identifying TCP 
Tahoe, Reno, NewReno, and RenoPlus algorithms, as well as 
the support of SACK and ECN options. Technically, this is a 
much harder fingerprinting problem because it requires 
expertise of TCP to design an effective probing test. For 
instance, the author of [6] suggests that the difference among 
NewReno and Reno will be discovered only when multiple 
packets are dropped within the same congestion window. TBIT 
tool follows this observation and provides a test involving 20 
input data segments.  

Various schemes have been proposed to defend against 
malicious fingerprinting. Since tools like Nmap use very short 
(usually one packet) tests, it is easy to “patch” the host so that 
the response to these tests will not reveal its identity [17]. For 
this reason Nmap has become much less effective now. In [21] 
remote intrusion based on TCP fingerprinting is studied and the 
authors design a protocol scrubber that transparently modifies 
network flow and removes the ambiguity. The Honeynet 
method proposed by [13] uses a different approach where a 
network of thousands virtual hosts is emulated and each of them 
can provide a different version of services to distract 
fingerprinting tools. To the best of our knowledge, there are no 
general formal/automated techniques for defending against 
fingerprinting. 

The nature of protocol system fingerprinting problem makes 
it closely related to protocol testing and identification. There is 
an extensive literature on applying formal methods to both 
active conformance testing and passive testing [8] [12]. Formal 
approaches have been proven to benefit a great deal in testing 
large and complex protocols [12]. However, fingerprinting 
problem is different than testing problem in that here we have 
many rather than one correct implementation. It is also different 
than protocol identification and learning problems [2] [10] 
because in the latter we do not have knowledge about the 
protocol specification to begin with, whereas for fingerprinting 
problem we have a (nondeterministic) specification, which is 
equivalent to a class of multiple and in the worst case 
exponentially many deterministic specifications [14]. 
Therefore, we need to design different algorithms for 
fingerprinting than that for testing. 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

III. A FORMAL MODEL 
Finite state machine models have been proven to be succinct 

in modeling various network protocols. A protocol specification 
usually contains both control portion and data portion; therefore 
we use a parameterized extended finite state machine (PEFSM) 
to model both:  

Definition 1 A Parameterized Extended Finite State Machine 
(PEFSM) is a 6-tuple M=<S, sinit, I, O, X, T>, where 
1. S is a finite set of states; 
2. sinit is the initial state;  
3. )}(,),(),({ 111100 −−= PP viviviI

G…GG
 is the input alphabet of 

size P ; each input symbol ik )0( Pk <≤  carries a vector 
of parameter values kv

G
; 

4. )}(,),(),({ 111100 −−= QQ wowowoO
G…GG

  is the output alphabet 
of size Q ; each output symbol ok )0( Qk <≤  carries a 
vector of parameter values kw

G
; 

5. X is a vector denoting a finite set of variables with default 
initial values;  

6. T is a finite set of transitions. For Tt ∈ , 
>′=< ))(),(,()),(,(),(),(,, woviXAviXPwovisst

GGGGGGG  is a 
transition where s and s’ are the start and end state of the 
transition, respectively; i and o are the input/output 
symbols with parameters; ))(,( viXP

GG
 is a predicate of the 

variables and input parameters; the action 
))(),(,( woviXA
GGG

 is an operation on the variables, based on 
the current variable values, input and output parameter 
values. 

In PEFSM we use parameterized input and output symbols to 
model the critical content of data packet. For instance, TCP data 
packets carry Sequence Number and Acknowledgement 
Number as parameters. PEFSM model has the same computing 
power as Turing Machine, and it can be used to appropriately 
model network protocols. The semantic of PEFSM follows the 
classic EFSM [8] [12] and we do not repeat it here.  

Fig.1 shows part of the PEFSM model of a simplified TCP 
Tahoe implementation. It contains five states: initial state 
(SYN), slow start (SS), congestion avoidance (CA), 
retransmission (REX) and finish (Fin). The most important two 
input/output symbols are PKT[x,y] and ACK[x], where PKT is a 
segment of data packets parameterized by starting and ending 
sequence numbers; and ACK is acknowledgement packet 
parameterized by acknowledgement number. Table I shows one 
transition of this model. Upon input ACK the transition takes the 
machine from state SS to CA. The guard checks that the 
acknowledge number is valid and the useful window is larger 
than zero. The action of this transition reduces the threshold and 
reset cwnd according to the TCP RFC. The output of this 
transition is PKT parameterized by the current useful window. 
Following [3] we refer to this oversimplified implementation as 
NoFR later in the paper.  

 

 
Fig. 1.  PEFSM model of TCP NoFR (State variables, guards and 

actions of transition are omitted) 
TABLE  I    EXAMPLE OF PEFSM TRANSITION IN NOFR (FIG.1) MACHINE 

Name SS_CA 
Start State SS 
End State CA 
Input ACK(ack) 
Output PKT(to_send,snd_nxt-1) 
Guard (cwnd>=ssthresh && (ack > snd_una) && 

(ack<=snd_max) && (ack+cwnd> snd_nxt)) 
Action ssthresh=cwnd/2; if (ssthresh<2) ssthresh=2; 

cwnd = 1;snd_nxt = snd_una+1;ack_dup = 0; 
 

A configuration cfg of PEFSM M is a combination of its state 
and variable values: >=< xscfg , , where Ss∈ . Denote the set 

of all configurations as CFG. A test sequence ∗∈ Iseq  is a 
valid input sequence. A PEFSM is deterministic if any 
configuration enables at most one transition for any input. Note 
that it is still possible that there are multiple transitions from a 
state so long as the guards of them are mutual exclusive. We use 
deterministic PEFSM to model protocol implementations. The 
output from a deterministic PEFSM is also deterministic, that is, 
for an input there is only one output response. The response of 
machine M to a single input is defined by the transition, and we 
can similarly define the response of M to a sequence of inputs. 
From configuration >=< xscfg ,)0( , we say machine M 
generates output sequence OoO1…OL-1 upon input sequence seq 
= IoI1…IL-1 of length L if and only if: there exists a sequence of 
transitions tot1…tL-1, such that, for Lk <≤0 , tk has the 
corresponding input and output symbols Ik and Ok; the 
parameters of Ik enable the guard of tk; and the action of tk 
updates the configuration from cfgk to cfg(k+1). Consequently, we 
can define an output function: λM : I*→O*  as: 
λM(seq)=OoO1…OL-1 if M generates output  sequence 
OoO1…OL-1 upon input sequence seq from its initial 
configuration. Note that we are only interested in the outputs of 
a machine from its initial configuration, since most protocol 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

implementations have “reset” capability [12] to take the 
machine to its initial state before conducting an experiment.  

To formally define the fingerprinting problem we need to 
model a set of valid implementations that all conform to a 
specification, and we call them a Candidate Group.  

Definition 2 Given a candidate group of implementation 
machines, C = {M1, M2…, Mk}, a test sequence ∗∈ Iseq  
separates Mi and Mj if λMi(seq) ≠ λMj(seq). A fingerprinting set F 
for a candidate group C is a set of test sequences, such that for 
each pair of machines in C, F contains a sequence that separates 
them. A distinguishing fingerprint of a particular machine Mi is 
an input sequence that separates Mi from all the other machines 
in the candidate group. 

Without loss of generality we assume that each machine in a 
candidate group is minimized and that no two machines are 
equivalent. From the known results in FSM testing theory [12], 
for any given candidate group there is a fingerprinting set of no 
more than k test sequences where k is the cardinality of the 
candidate group. In next section we shall discuss the 
generalization of this process to PEFSM. Note it is not 
necessary that each machine has a distinguishing fingerprint. 

We have an Implementation machine Under Fingerprinting 
(IUF) that is supposed to be one of the machines in a candidate 
group, and we take it as a “black-box”, i.e., we can only observe 
its I/O behaviors without knowing its internal structure. We 
want to identify it among the candidate group.  

The fingerprinting test process can be active or passive. The 
goal of active fingerprinting is to construct a fingerprinting set 
for a given candidate group. As for passive fingerprinting, we 
are given a trace of I/O sequences from IUF for identifying it 
among the given candidate group. That is, we ask the question 
whether the given trace is a distinguishing fingerprint for the 
IUF. 

A candidate group can be modeled simply as a set of 
deterministic PEFSMs, and a pair wise analysis can be easily 
devised. A more generic approach is to specify all the possible 
IUF in a candidate group by using one nondeterministic 
PEFSM. Every derived machine [14] of that specification 
machine is considered a possible candidate. This is often 
encountered in practice. 

TABLE  II    CLASSIFICATION OF FINGERPRINTING PROBLEMS 

 Active 
Experiment 

Passive 
Experiment 

Candidate Group as a set 
of deterministic PEFSMs Problem 1 Problem 2 

Candidate Group as a 
nondeterministic PEFSM Problem 3 Problem 4 

In summary, we have four cases for fingerprinting as shown in 
Table II. In this paper we will focus on problem 1 and 2. We 
present efficient algorithms and analyze their complexity. 
Problem 3 and 4 are harder since the cardinality of a candidate 

group is much larger when modeled by a nondeterministic 
machine [14]; in the worst case there can be exponentially many 
candidate machines. 

IV. ACTIVE AND PASSIVE FINGERPRINTING ALGORITHMS 
  For fingerprinting Problem 1 and 2, we have a candidate group 
C = {M1, M2…, Mk} of PEFSMs. All the candidate machines 
have the same input and output alphabet I and O with P = |I| 
input symbols. We present active fingerprinting algorithm first.  

A.  Active Fingerprinting Algorithm 
We construct a fingerprinting set F for a candidate group C as 

follows. First consider the simple case where all the machines 
are deterministic finite state machine (FSM) without any 
variables and parameters and all the machines have no more 
than n states. Select arbitrary two machines Mi and Mj from C, 
and construct a separating sequence ∗∈ Iseq such that 
λMi(seq)≠λMj(seq). Such a sequence always exists since all the 
machines are minimized and in-equivalent [12], and it takes 
time O(Pnlogn) to construct. Depending on the different output 
sequences upon input sequence seq, we partition C into at least 
two subgroups (one containing Mi and the other containing Mj) 
We then repeat the same process on each subgroup until the 
candidate group C is partitioned into k subgroups, each of which 
is a singleton set. The total number of separating sequences 
constructed is no more than k, and they consist of a 
fingerprinting set F for C. Obviously, the total cost is 
O(Pknlogn) where P is the number of input symbols, k the 
number of machines in the candidate group, and n the maximal 
number of states of all the machines in the group. 

However, for the general PEFSM Mi and Mj from C, the 
algorithm to construct a separating sequence is more involved. 
A straightforward approach is to compute the reachability graph 
(FSM) [6] of each of them and then calculate the separating 
sequence as for FSM. Assume that Mi and Mj each has no more 
than n states and their reachability graph has no more than N 
states where n<<N. In practice N is large if not infinite and it is 
often impossible to handle. One might want to minimize them 
first; however, it is often also impossible. Online minimization 
[8] was proposed. Suppose that the minimized reachability 
graph has N*<<N states. Then an online algorithm based on state 
block splitting constructs a minimized reachability graph with a 
cost O(PN*2). 

For fingerprinting set construction, we can even do better, i.e., 
there is no need to construct the whole minimized reachability 
graph for the following reason. As in [11], we can split the 
blocks of states where no two blocks contain equivalent states 
while states in a same block may be in-equivalent before the 
termination of the minimization algorithm. With this 
observation we can construct separating sequences between the 
machines in the process of state block splitting. If we can 
successfully find a separating sequence for two machines even 
before completing their minimization, then we can terminate the 
process; this separating sequence remains valid till the splitting 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

completes. Therefore, there is no need to continue until the 
minimized machines are fully constructed. We have: 
n<<N**<<N*<<N where n is the original specification machine 
size, N** the machine size when the fingerprinting set is 
construct before block splitting is completed, N* the minimized 
reachability graph size, and N the reachability graph size. We 
now show that we can construct fingerprinting set in time and 
space polynomial in N**. 

For PEFSM we use the notion of block to represent a set of 
configurations. Initially each state in PEFSM is a block that 
contains all configurations in that state. Define the quotient 
graph of a PEFSM M as follows: each block is a node, and there 
is an edge labeled t between blocks b1 and b2 if and only if there 
are configurations 11 bcfg ∈  and 22 bcfg ∈  such that transition t 
takes cfg1 to cfg2 in M. An edge t between b1 and b2 is stable if t 
takes all configurations in b1 to some configuration in b2. An 
edge t is infeasible if t takes no configuration in b1 to b2. 
Infeasible transitions are transient result of block splitting. An 
edge is unstable if it is neither stable nor infeasible. Cleary if the 
quotient graph contains only stable transitions then it is exactly 
the minimized reachability graph of the original PEFSM. 
Finally we use t(b) and t-1(b) to denote the image and reverse 
image of b under transition t.  

Algorithm 1  
(Online Separating Sequence of two PEFSMs) 
Input: PEFSM M1 and M2; 
Output: Separating Sequence SEQ; 
begin 
1. partition each state in M1 and M2 into blocks such that 

each block enables the guard of one transition; 
2. generate quotient graph G1 and G2 for M1 and M2; 
3. checksize := max{|G1|, |G2|}; 
4. while (true) 
5.    if (max{|G1|, |G2|} >= checksize)  
6.       find separating sequence SEQ for G1 and G2; 
7.       if (found)  
8.          return SEQ; 
9.       checksize := ×2 checksize;    
10.    find an unstable edge t(c→b) in G1 
11.    if (found)   
12.       c’ :=c ∩ t-1(b); 
13.       split c into two blocks c’ and c-c’; 
14.       remove all resulting infeasible transitions; 
15.    repeat 10-13 for G2 and split one block 
end 

Lines 1-2 prepare the quotient graph by initializing the 
blocks. Since M1 and M2 are deterministic, transitions from a 
same state are mutually exclusive; therefore the operation in line 
2 is well defined. Lines 4-15 contain a loop, each iteration of 
which will split one block for each machine. Line 6 takes two 
quotient graphs G1 and G2 and tries to find a separating 
sequence. We treat G1 and G2 as two nondeterministic finite 
state machines and apply the classical state partition algorithm 
(omitted due to limit of space). It is important to note that this 

does not need to be done in all iterations, but only when the 
number of blocks is doubled. We assume the candidate group 
does not contain equivalent PEFSM, therefore separating 
sequence exists for any M1 and M2 and the loop will terminate 
when the size of G1 or G2 reaches N**. 

 
Fig. 2(a). G1 and G2 before splitting 

 

 
Fig. 2(b). G1 and G2 split to two blocks each 

 

 
Fig. 2(c). G1 and G2 split to three blocks each. I1I2 is a separating 

sequence of the two because it outputs 0 on G1 and 1 on G2 

Now we use an example to illustrate algorithm 1. We have 
two simple PEFSM M1 and M2. Each of them has only one state, 
and the variables include three bits b = b0b1b2 initialized to all 0. 
There are two input symbols. I1 alters b in some manner and I2 
makes the machine output its first bit b0. Fig. 2(a) shows the two 
machines. We can tell that M1 and M2 respond to I1 differently; 
M1 increments the value of b by 1 while M2 decrements it. The 
size of reachability graph of both machines is 8, corresponding 
to 8 different combinations of b0b1b2. In fact, the minimum 
reachability graph also has 8 states, i.e. N*=N=8. Now we want 
to find a separating sequence of them by gradually splitting the 
quotient graphs G1 and G2. First notice that transitions of I2 will 
never be unstable because they do not change state, therefore we 
only split transitions of I1. Before algorithm 1 starts we first split 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

the only state of both machines into two blocks (line 1) 
according to the output on I2. The purpose is to eliminate the 
parameters from the outputs so that we can treat outputs as 
separate symbols. Fig.2(b) shows the graphs after this step. Now 
checksize is 2. In the first iteration of the loop, we will first try to 
find a separating sequence of G1 and G2 but they are not 
separable now. We set checksize to 4. At line 10 suppose the 
unstable transition from state “b0b1b2=0**” is picked for both 
machines, and we split this state. The resulting graphs are shown 
in Fig. 2(c). Note here we omit the steps of removing infeasible 
transitions. Now G1 and G2 are already separable by sequence 
I1I2. However, because of checksize algorithm 1 will wait till 
next iteration to have 4 blocks. 

In order to analyze the complexity of this algorithm, we need 
to assume some basic operations of blocks. The representation 
and operation for block varies for different protocols. For 
clarity, we assume a constant time operation for block 
intersection, difference, inversion and emptiness test. For the 
initial machine size before splitting n and P, N**, and N* defined 
as in the algorithm, assume N**=n× 2k, the loop for lines 4-15 
has at most N** iterations. Lines 1-2 take time O(N**× P× C), 
where C is the constant cost for block operation. In each 
iteration line 10 has to check every block and every input 
symbol, therefore the total time this algorithm spends in lines 
10-14 is bounded by  

)()( 2****
PNOCPiO

N

ni
×=××∑

=
 

The cost of line 6 is O(n’2× P), where n’ is the size of G1 and G2, 
hence the total time spent on this operation is 

)())2(( 2**2

0
PNOPnO ik

i
×=××∑

=
 

All added up together, the time complexity of the proposed 
algorithm is O(PN**2). In the worst case N**= N* and our 
algorithm costs the same as the classical online minimization 
algorithm but it may terminate with a separating sequence long 
before the splitting is completed, hence on the average it 
performs much better.  

Proposition 1 Applying Algorithm 1, the time complexity of 
calculating a separating sequence of two PEFSM is O (PN**2), 
and the worst case time complexity is O(PN*2) where P is the 
number of input symbols, N** and N* are the number of blocks 
when the separating sequence is obtained and that when the 
online minimization procedure is completed, respectively. 

 Note that in practice it is very likely that N**<<N*. 

Now we use this algorithm to construct fingerprinting set. 
The main idea is straightforward. We maintain a partition of 
candidate group. Starting from an empty set, we keep adding 
separating sequences to refine the partition until all sets in the 
partition are singletons. The procedure is summarized in 
algorithm 2 below. 

 

Algorithm 2 (Fingerprinting Set for Candidate Group) 
Input: candidate group C = {M1, M2…, Mk}; 
Output: fingerprint set F; 
begin 
1. F := {};  
2. partition :={{1,2,…,k}}; 
3. while (partition.size < k)  
4.    find machine Mi and Mj in the same set; 
5.    calculate separating sequence SEQ for Mi and Mj ; 
6.    foreach set S in partition do 
7.       split S according to the output of SEQ ; 
8.       F := F ∪  {SEQ}; 
9. return F; 
end 

 
During every round in lines 3-8 one test is added to the 

fingerprinting set. Since there are at most k iterations, the total 
cost of this algorithm is O(kPN**2). Given N as the size of the 
largest minimum reachability graph in {M1, M2…, Mk}, and the 
resulting set contains no more than k sequences. 

Proposition 2 Applying Algorithm 2, the time complexity of 
constructing a fingerprinting set for candidate group of size k  is 
O (kPN**2 ), and the worst case time complexity is O(kPN*2) 
where P is the number of input symbols, N** and N* are the 
number of blocks when the separating sequence is obtained and 
that when the online minimization procedure is completed, 
respectively. 

 Note again that in practice it is very likely that N**<<N*. 

B. Passive Fingerprinting Algorithm 
In passive fingerprinting we have an explicitly modeled 

candidate group C and a trace T. The trace contains a vector of 
input symbol and a vector of output symbol. Since in the 
PEFSM model we assume each transition only generates one 
output, the vectors of input and output have the same length. 
The goal of passive fingerprinting experiment is to decide the 
machines that could possibly generate T. If T could only be the 
trace from one machine, then it implies a fingerprinting 
sequence and we successfully identify the implementation.  

To achieve this goal, we follow a passive testing paradigm 
[12]. We scan the trace only once and conduct testing with all 
the candidate machines concurrently; whenever all except but 
one machine are eliminated, we can terminate the algorithm. 
The key structure needed to maintain during this process is the 
state uncertainty for each machine. State uncertainty represents 
the knowledge we have about the current state of a machine M. 
If M is deterministic, then the size of uncertainty will not 
increase. There are many different ways to maintain state 
uncertainty. Here we calculate the reachability graph for each 
machine first and maintain the set of states in the resulting finite 
state machine (corresponding to set of configurations in the 
original PEFSM). This is feasible if we can obtain the finite 
reachability graph, but not very efficient when the graph is 
large. In [8] we showed how to maintain uncertainty in EFSM. 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

Our passive fingerprinting algorithm 3 works as follows. First 
we calculate the minimal reachability graph of each machine Mi. 
Then we inspect each pair of I/O symbol starting from the first 
one in the trace. Initially assume that all machines could 
possibly be the IUF. The state uncertainty is maintained for each 
Mi, initialized by all its states (line 4). For each I/O pair 
passively observed, we update each uncertainty by applying the 
transition function to the current uncertainty. Particularly, we 
are interested in the event that the state uncertainty of a machine 
becomes empty (line 12), which implies that this machine could 
not be the IUF otherwise there is a contradiction. When the 
whole trace is processed, the remaining machines are the 
possible IUF (line 16). 

Algorithm 3 (Passive Fingerprinting) 
Input: candidate group C = {M1, M2,…, Mk},  
trace T=<<I0,O0>,<I1,O1>,…,<IL-1,OL-1>>; 
Output: possible candidate set PC; 
begin 
1. PC := C; 
2. foreach i in [1..k] do 
3.    calculate minimized reachability graph Gi ; 
4.    uncertainty[i] := all states in Gi ; 
5. id = 0 ; 
6. while (PC.size >1 and id < L) 
7.    foreach Mi in PC do 
8.       new_uncertainty :={}; 
9.       foreach t <Ssrc, Sdst, It, Ot> in Gi do 
10.          if (Ssrc∈uncertainty[i] and Iid == It and Oid == 

Ot) 
11.            new_uncertainty = new_uncertainty ∪ Sdst ; 
12.       if (new_uncertainty == {})  
13.          PC := PC – {Mi} ; 
14.       else uncertainty[i] := new_uncertainty ; 
15.    id := id + 1; 
16. return PC; 
end 
 

Now we analyze the complexity of this algorithm. Lines 6-15 
contain a loop that takes one I/O pair at each step. Lines 7-14 
inspect each candidate machine and update the state uncertainty. 
If the size of a reachability graph is no more than N, then Lines 
7-14 terminate in time O(k × N*× P) because the number of 
transitions that must be considered is less than N*× P. Since the 
trace contains L packets and in the worst case they all need to be 
inspected, the cost of loop 6-15 is O(L × k × N* × P). As 
mentioned in the previous section, the cost of calculating 
minimized reachability graph is O(N*2× P), therefore the total 
cost of the algorithm is )( 2** PNkPNkLO ××+××× . When 
the algorithm terminates, the resulting candidate set may contain 
more than one machine. In this case we can not identify a single 
implementation; instead we eliminate some impossible ones. On 
the other hand, if the algorithm terminates with only one 
candidate, then it is the implementation, and we can also 

construct a fingerprinting sequence starting from the initial state 
by back-tracking the uncertainties. 

Proposition 3 For a candidate group of size k, the worst case 
time complexity of passive fingerprinting on a trace of length L 
is )( 2 PNkPNkLO ××+××× where P is the number of input 
symbols and N the size of the reachability graph traced. 

V. CASE STUDY 

A. Active Fingerprinting using NMAP Tests 
Nmap [22] is the most popular active OS fingerprinting tool. It 

identifies a TCP stack implementation by using nine test 
sequences: Tseq is for TCP initial sequence number prediction; 
T1 to T7 are seven specially constructed TCP packets; and PU is 
for probing unreachable port. In the fingerprint database Nmap 
stores the encoded response to those test sequences of more than 
1300 implementations. Those implementations are classified 
into 33 categories, spanning from general purpose Operating 
Systems to VoIP phones. In this section we extract one 
candidate group for each category from the fingerprint database 
and calculate the fingerprint set. Note that the set of all nine tests 
forms a fingerprint set of most implementations but for some 
category not all tests are needed. 

Technically, the test T1 to T7 and PU are quite different from 
Tseq since the design of Tseq and encoding scheme of its output 
are significantly more involved. For simplicity we still treat Tseq 
as a single “virtual” input symbol. Given this assumption, the 
modeling of candidate machines is very concise. In fact, they are 
all FSM. Fig. 3(a) and (b) show the model of Solaris 9.0 and 
CISCO IOS 11.0 operating system respectively. 

 

 
Fig. 3(a). Nmap candidate machine model of Solaris 9.0 

 

   
Fig. 3(b).  Nmap candidate machine model of Cisco IOS 11.0 

 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

Models of Nmap candidate machines have the property that if 
separating sequence of Mi and Mj exists, then it has length 1. 
This is due to the large number of different outputs for the test 
inputs. Devising such inputs certainly requires insight and 
intelligence, and once those powerful input symbols are known 
both fingerprinting experiments and potential defense scheme 
become straightforward. For example, it is obvious to see from 
Fig. 3 that all inputs except T3 could be used as separating 
sequence for the two machines. We use algorithm 2 to calculate 
fingerprinting sets for the largest 10 categories and show the 
result below in Table III. In general, larger candidate group 
requires more tests. Two of the categories do not have an exact 
fingerprint set (shown by * in the last column) since they include 
implementations with only minor version differences which will 
not be distinguished by any Nmap test. 

TABLE III    FINGERPRINTING SETS IN NMAP 

Category Size Fingerprinting Set 

General Purpose 651 {Tseq,T1-T7,PU}* 

Broadband Router 112 {Tseq,T1,T2,T3,PU} 

Router 105 {Tseq,T1,T2,T3,PU} 

Printer 73 {Tseq,T1-T7,PU}* 

Firewall 61 {Tseq,T1,T2,T3,T4,PU} 

Switch 48 {Tseq,T1,T2, PU} 

Terminal Server 43 {Tseq,T1,PU} 

WAP 34 {Tseq,T1,PU} 

Print Server 27 {Tseq,T1,PU} 

Webcam 14 {Tseq,PU} 
 

B. Passive Fingerprinting on TCP 
In this section we present our experiment on fingerprinting 

TCP congestion control algorithms. This is technically a much 
harder problem than OS fingerprinting using special TCP and 
ICMP packets as both the model and the test sequences are 
much more involved. Congestion control schemes implemented 
in the production TCP stacks include standard TCP Tahoe, 
Reno, NewReno and so forth. Moreover, it has been reported 
that some earlier version of Operating Systems deploy 
nonconforming congestion control scheme such as Tahoe 
without fast retransmission (NoFR) [15]. 

We use PEFSM to model four different implementations: MNF 
(NoFR), MT (Tahoe), MR (Reno), and MNR (NewReno), and then 
conduct a passive fingerprinting experiment. We have already 
seen NoFR model in section III. In a similar way we model the 
other three. Two of them, Tahoe and NewReno are shown in 
Fig. 4(a) and (b). They both have more states than NoFR model. 
Tahoe implementation uses fast retransmission scheme (FRX) 
and NewReno implementation uses a variant of fast recovery 
(FRC) scheme. Note in these models we only have two 

parameters of output symbol PKT, namely the starting sequence 
number and ending sequence number. This is a simplification 
for analysis but this will cause some trouble when we model a 
transition with output of non-continuous packets. For the 
models in this experiment, we split the transition to handle. 
However, to model more complicated schemes such as TCP 
Selective Acknowledgement (SACK), we should add more 
parameters to the output to allow maximum flexibility. 

 
 

Another simplification we made is the omission of connection 
management part of TCP. Since the focus in this experiment is 
congestion control schemes, we simply use one state (SYN) to 
represent the initial state and another one (FIN) to represent the 
connection tear down. It is straightforward to augment these 
models to include the connection management features. 

Recall that from the TCP specifications the major difference 
between FRX and FRC is that when a packet is lost, FRX brings 
the machine back to slow start (SS) while FRC inflates the 
congestion window and continues responding to duplicate 
acknowledgements. In case of multiple packet loss, Tahoe is 
capable of retransmitting more than one packet per round trip 
time but some of them could be unnecessary; Reno and 
NewReno can only retransmit one packet per round trip time. 
Those features imply the fingerprint of each, however, as 
studied in [6], it requires great insight of those implementation 
to see how exactly the difference is manifested by output 
packets. 

Fig. 4(a).  PEFSM model of TCP Tahoe implementation 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

 

We now present our automated process on the models without 
resorting to any expertise of TCP implementations. Two types 
of traces are used in the passive fingerprinting experiment. The 
first type is collected by monitoring regular TCP traffic on 
internet, and our result shows that those traces normally do not 
contain distinguishing fingerprint. As already noted in the 
literature of TCP passive measurement [7], the reason is that 
most TCP traffic (over 90% of all TCP senders) does not have 
the interaction pattern that can distinguish those 
implementations.  

In our model, if there is no packet loss, then all four machines 
will follow the state transition pattern SYN-SS-CA-FIN and the 
I/O behavior will be the same. Furthermore, if the trace contains 
one packet loss, then it may distinguish Tahoe and NoFR, while 
Reno and NewReno still behave the same way. 

The second type of trace is collected using TCP Behavior 
Inference Tool (TBIT). TBIT is essentially an active 
fingerprinting tool that uses preset strategy and parameters for 
setting up a TCP connection and simulates packet losses. TBIT 
aims at characterizing the TCP sender behavior for web servers. 
Here we use the proposed passive fingerprinting algorithm to 
validate the fingerprints produced by the tool. Note that these 

are very special traces that normally will not be observed. The 
purpose of using them is to illustrate how passive fingerprinting 
algorithm works. 

Both types of traces are captured by Tcpdump program. 
However, Tcpdump traces are not be directly applicable for our 
algorithm. In order to translate them to an I/O trace of PEFSM, 
we develop a packet decoder. The decoder performs the 
following tasks: (1) Estimate a roundtrip time from the trace and 
break the trace into sections based on each round trip time. (2) 
Decode from the packet content the receiver’s window (rwnd). 
(3) Construct one input symbol with parameters using the 
packets sending from the client to the server. Consecutive 
incremental acknowledgements are combined, but not 
duplicated acknowledgements. (3) Similarly construct one 
output symbol with parameters using the packets sending from 
the server to the client; multiple packets are combined into 
intervals (PKT [start,end]). In case they can not be combined, as 
discussed earlier, we add an extra transition with null input. (4) 
Detect retransmission timeout and insert a special input symbol 
to trigger the retransmission. 

Table IV shows one run of algorithm 3 on the special trace 
generated by TBIT. Initially the state uncertainty of each 
candidate is nonempty. The first four rounds are a typical slow 
start phase restricted by receiver’s window (5 in this case). 
There is no difference observed. After the duplicated 
acknowledgement ACK [12] is sent four times, we see a fast 
retransmission without timeout which rules out MNF. Next, ACK 
[15] is a partial acknowledgement, which will make MT in state 
SS, MNR in FRC and MR in CA. In this case MR can not output 
PKT [15] due to the limit on window size; hence its state 
uncertainty becomes empty. Similarly, PKT [17] will make state 
uncertainty of MT empty because MT can only send one packet. 
After the whole trace is consumed our algorithm reports 
NewReno as the only possible implementation, therefore we 
have verified the fingerprint sequence. 
TABLE IV    PASSIVE FINGERPRINTING ON A TCP TRACE GENERATED BY TBIT 

Decoded Tcpdump Trace Candidate with Non-empty 
State Uncertainty 

Input Output  
ACKSYN PKT [0,1] { MNF, MT, MR, MNR } 
ACK [2] PKT [2,5] { MNF, MT, MR, MNR } 
ACK [6] PKT [6,10] { MNF, MT, MR, MNR } 
ACK [11] PKT [11,15] { MNF, MT, MR, MNR } 
ACK [12] PKT [16,16] { MNF, MT, MR, MNR } 
ACK [12] - { MNF, MT, MR, MNR } 
ACK [12] - { MNF, MT, MR, MNR } 
ACK [12] PKT [12,12] { MT, MR, MNR } 
ACK [15] PKT [15] { MT,MNR } 

- PKT [17] { MNR } 
ACK [18] PKT [18] { MNR } 
ACK [19] PKT [19,20] { MNR } 

Fig. 4(b).  PEFSM model of TCP NewReno implementation 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

VI. DEFENDING AGAINST MALICIOUS FINGERPRINTING 
Up to this point we have discussed the techniques used to 

fingerprint network protocol systems. Now we take a view from 
another side. In this section we briefly discuss the techniques 
used to defeat protocol fingerprinting. As the goal of 
fingerprinting is to identify a protocol implementation, the goal 
of a defense mechanism is to hide this information. That is, 
when a principal conducts an active or passive fingerprinting 
experiment, the information he gets is insufficient to draw a 
conclusion or will lead to a wrong conclusion, and ideally this 
would hold even if the test sequence applied is a fingerprinting 
set. Toward this goal, a defense system usually involves 
modification of the I/O behavior of an implementation. 
Generally speaking there are two methods to hide the identity: 
scrubbing and camouflage. Scrubbing is used when the 
fingerprint is caused by some input sequences whose 
corresponding output is not determined by the specification. 
Clearly, a communicating peer should not assume any specific 
output. In this case a scrubber works by modifying the output to 
such sequences and “erasing” the fingerprint. In contrast, 
camouflage is used when the outputs to a sequence are specified 
for each candidate implementation and the communicating peer 
is expecting one of them. The original output is modified to be 
that of another candidate implementation. As one could imagine, 
camouflage is much more expensive than scrubbing because 
state information needs to be maintained. If the number of 
fingerprinting sequence is large, this approach is almost 
identical to redeploying a different protocol implementation. 

There is one important principal in the defense of 
fingerprinting: the modification should be transparent to all 
regular users. A regular user’s behavior is defined in the 
protocol specification and it must be retained all the time. Note 
that it is possible that regular user’s behavior is distinct for 
different implementations, as we have seen in the TCP example. 
Moreover, the peers of our target host may or may not assume a 
particular type of behavior. These factors to a large extent 
decide what defense method should be used and what the result 
would be. We discuss different cases below. 

There are various issues of designing and deploying a 
fingerprint defense system. First of all, it could be deployed 
online or offline. An offline defense system is a patch to the 
original protocol implementation that statically changes its 
response to some input sequences; while an online system is 
usually installed as a component of the firewall and 
transparently modifies the inbound and outbound traffic. 
Moreover, an online defense system could be synchronous, 
meaning that it will respond immediately after it receives an 
input packet and no delay will occur. It could also be 
asynchronous, where a buffer holds a small number of packets. 
Buffering some packets will help make better decisions of 
defense; however, it is not always possible to delay the response. 
Those design details are out of the scope of this paper. [17] and 

[21] discuss the detail about how a defense system could be 
implemented on a typical protocol stack. In this paper we focus 
on the theoretical model of defense and introduce general 
solutions. 

A. A Formal Model 
In order to see the nature of fingerprint defense problem, we 

again use a formal model. Similar to the discussion in section IV, 
we have a candidate group C = {M1, M2…, Mk}. Define the trace 
set Ti ∈ (I*× O*) of implementation Mi as follows. Ti = {t| t = 
<Seq, λMi(Seq)>, Seq∈ I*}. In short, Ti

 is the set of I/O traces that 
could possibly be generated by Mi. Note if a trace t∈Ti, then its 
prefixes are all in Ti. We define the attacker trace set Ti

a by one 
of the following two ways. (1) Ti

a= {t|t∈Ti, and t∉Tj, ∀ j≠i}, 
or (2) Ti

a= {t|t∈Ti, and ∃ j,k (j≠k and t∈Tj and t∉Tk)}. The 
first one defines an attacker trace as one that distinguishes an 
implementation from all others in the group, and the second 
defines it as one that distinguishes any two implementations. 
Depending on the application environment and the requirement 
for defense, either of these two could be more appropriate. For 
both definitions, if t1∈Ti

a and t1 is the prefix of t2, then t2∈Ti
a. 

Finally, a subset of Ti, the user trace set contains the traces that 
are required by the user and therefore must be included in any 
implementation. We denote the user trace set of Mi as Ti

u.  

Let us consider a scenario of three implementations M1, M2 
and M3. Their trace sets T1, T2 and T3 are shown by the Venn 
diagram in Figure 5. We adapt the first definition of attacker 
trace, i.e. T1

a = T1 - T2 -T3. Suppose the protected host is running 
implementation M1. Initially we have an empty trace, which 
belongs to every trace set. The goal of a fingerprinting 
experiment is to apply a sequence leading the trace to any of the 
attackers trace set, so the implementation could be identified. 
For instance, in (a) the trace <I1I2, O1O2> are common to all 
implementations; however, the next input makes the trace 
<I1I2I3, O1O2O3> in T1

a and therefore identifies M1. 

 

 
Fig. 5(a) Defense against fingerprinting by scrubbing 

 
 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

    
                         (b)                                                    (c) 

Fig. 5(b) Defense against fingerprinting by camouflage 
Fig. 5 (c) A case with no solution 

B. Defense Schemes 
To prevent attacker from identifying a machine, usually the 

defense system has to change the trace. The goal here is either 
not to produce any trace in attacker trace set, or produce an 
attacker trace of a different implementation. Based on users 
trace set we classify the solutions into two different cases. 

Case 1 (Common User Trace Set) T1
u = T2

u=…= Tk
u. The 

user trace set is the same for all implementation. This implies 
∩
k

i
i

u
i TT

1=
⊆ . This also implies Ti

u ∩ Ti
a ={}. Fig. 5(a) shows this 

case. This is a very typical case where the specification only 
defines a unique set of “core” behavior (Tu) shared by all 
implementations. The trace outside users set is not essential and 
could be implemented arbitrarily. Scrubbing is effective in this 
case. We want to modify M1 to only include the core features 
and shadow the difference on other traces. Therefore, the goal is 
to build M1

* whose trace is Tu, i.e. T1* = Tu. The basic strategy is 
to monitor the incoming sequences, and whenever the next input 
symbol (in this case I3) will take the trace into T1

a, the defense 
system simply discard the input. This will not affect regular 
users because I1I2I3 is not in T3

u.  

Case 2 (Unique User Trace Set) Ti
u≠Tj

u. The user trace sets 
are different in this case. This implies 

∩
k

i
i

u
i TT

1=
⊃  and also Ti

u ∩ 

Ti
a
 ≠ {}. Fig. 5(b) shows this case. The grey circle represents the 

union of all user sets Tu. This case is characterized by the fact 
that some implementations have unique traces, and the regular 
user expect the trace from any implementation. Consequently 
our goal is to modify M1 to M1

* whose trace is a subset of Tu and 
it must not include any trace in T1

a, that is, T1* ⊆ Tu and T1* ∩ 
T1

a = {} In contrast to case 1, we can not use scrubbing alone to 
achieve the goal. The first two inputs are the same with case 1. 
When I3 is observed, we are not allowed to scrub it because it is 
a user trace. On the other hand, if we follow the original 
response of M1 and output O3, the resulting trace could be in T1

a. 
To defend in this case, we have to use camouflage. The main 
idea is to pretend to be another implementation. This could be 
done statically if we decide the disguise implementation 
beforehand. For instance, in Fig. 5(b) we choose M2 as the 
disguise. Hence upon receiving I3, the new implementation will 

follow M2’s response, and output O4. This trace will lead to a 
wrong conclusion of the fingerprinting algorithm. As the result, 
the defense system generates a user trace set T2

u. Note here that 
camouflage is not always practical. Some times it is imaginable 
that regular users expect only the trace from Ti

u. This could be 
because some communicating peers are aware of the special 
implementation feature of Mi, and they indeed make use of it. 
Fig. 5(c) demonstrates this scenario. The grey circle represents 
the user sets Tu and it is also the trace of our modified 
implementation M1*. Obviously now neither scrubbing nor 
camouflage is effective. From the graph we can see that upon 
receiving I3, we have three alternatives O3 O4 or O5. However, 
O4 and O5 do not belong to an acceptable user trace Ti

u, and O3 
lead the trace to Ti

a. 

Instead of deciding the disguise implementation offline, we 
have another option. We want to confuse the attacker as long as 
possible. On every input, we inspect the output of the current set 
of possible implementations and follow the maximum 
overlapping subset. This heuristic process is repeated until there 
is only one implementation possible. For example, in Fig. 5(b), 
when we see I3, we could follow any of M1, M2 or M3 because at 
this point the trace is in T1∩T2∩T3. If we follow T2, we 
immediately jump into T2

a. On the other hand, if we follow M1 
and M3 (they generate same output) the attacker still gets a 
nondeterministic result. We call the set of possible 
implementations confusion set and describe the algorithm as 
follows. 

The selection of C is up to the designer as long as it is a subset 
of all implementations. The size of C directly affects the 
complexity of the algorithm. Finally, we note that the maximum 
confusion trace approach is just another alternative, and it is not 
absolutely better than the static disguise approach because 
eventually both systems will camouflage as one 
implementation. 

Algorithm 4 (Maximum Confusion Trace) 
Input: candidate group C = {M1, M2,…, Mk},  
Input sequence Iseq=<I0,  I1, ... ,IL-1>; 
Output: Output sequence Oseq; 
begin 
1. CS := C; Oseq := < >; id := 0; 
2. while (id < L) 
3.    foreach Mi in CS 
4.        Oi := λMi (<Io,I1,…,Iid>); 
5.    partition CS by Oi and select the set of largest  

cardinality CSnext; 
6.    CS := CSnext; 
7.    Oseq := Oseq + Oi; 
8.    id := id + 1; 
9. return Oseq; 
end 

Fig.6 shows the result of maximum confusion set algorithm 
on selected Nmap candidate groups. We use four of the largest 
categories of Nmap implementations: Router, Print Server, Web 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



 

 

Proxy, and a subset of General Purpose Operating System. We 
use a particular fingerprinting sequence <T2, T5, T7, T6, T3, T4, 
T1>. We could see how the confusion set shrinks as more input 
symbols are consumed. For the majority of candidate groups 
after a sequence of length 5, the disguise implementation is pin 
down to a specific one.  

 
Fig. 6. Example of maximum confusion set camouflage algorithm 

VII. CONCLUSION  
Understanding fingerprinting problems for complex network 

protocol systems is crucial yet challenging for both network 
security and management. To complement and enhance current 
experimental study on fingerprinting, a formal approach is 
proposed. Parameterized Extended Finite State Machine is used 
to model protocol specification and implementation. Similar to 
protocol testing, fingerprinting problems are categorized as 
active and passive. For a candidate set of deterministic 
PEFSMs, efficient active fingerprinting algorithm is proposed 
based on the computation of pair wise separating sequences. 
This algorithm is based on the online minimization and avoids 
the generation of complete minimal system. Passive 
fingerprinting is conducted using concurrent passive testing on 
all candidate machines. We use the data set of popular 
fingerprinting tools NMAP and TBIT to verify our model and 
algorithms. To protect against malicious fingerprinting attack, it 
is desirable to modify the trace generated by an implementation 
to confuse and defend against fingerprinting experiments. We 
discuss the criteria of designing such defense systems and 
propose two plausible approaches: scrubbing and camouflage.  

ACKNOWLEDGMENT 
This work was supported in part by the U.S. National Science 

Foundation (NSF) under grant awards CNS-0403342 and 
CNS-0548403. 

REFERENCES 
[1] Amap Project, http://thc.org/thc-amap/. 
[2] D. Angluin. Computational learning theory: survey and selected 

bibliography. Proceedings of the 24th ACM STOC, 351-369,1992. 

[3] O. Arkin and F. Yarochkin. Xprobe2 - a ’fuzzy’ approach to remote 
active operating system fingerprinting. http://www.sys-security.com, 
2002. 

[4] R. Beverly. A robust classifier for passive TCP/IP fingerprinting. In 
Passive and Active Network Measurement, 5th International Workshop, 
PAM 2004. 

[5] D. Comer and J. C. Lin. Probing TCP implementations. In USENIX 
Summer, pages 245--255, 1994. 

[6] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno and 
SACK TCP. Computer Communication Review, 26(3):5–21, July 1996. 

[7] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose and D. Towsley: Inferring 
TCP connection characteristics through passive measurements, Proc. 
Infocom, 2004. 

[8] D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin. A formal 
approach for passive testing of protocol data portions. In 10th IEEE 
International Conference on Network Protocols (ICNP 2002), IEEE 
Computer Society, pages 122–131, 2002. 

[9] D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John, Passive 
testing and its applications to network management, Proc. ICNP, 
October 1997. 

[10] D. Lee and K. Sabnani, Reverse engineering of communication 
protocols, Proc. ICNP, pp. 208 – 216, October 1993. 

[11] D. Lee and M. Yannakakis. Online minimization of transition systems 
(extended abstract). In STOC ’92: Proceedings of the twenty-fourth 
annual ACM Symposium on Theory of Computing, pages 264–274, 
New York, NY, USA, 1992. 

[12] D. Lee and M. Yannakakis. Principles and methods of testing finite state 
machines - A survey. In Proceedings of the IEEE, pages 1090–1123, 
August 1996. 

[13] J. Levine, J. Grizzard, and H. Owen, Using honeynets to protect large 
enterprise networks, in IEEE Security & Privacy, November 2004. 

[14] R. Miller, D. Chen, D. Lee, and R. Hao. Coping with nondeterminism in 
network protocol testing. In 17th International Conference on Testing of 
Communicating Systems (TestCom), IFIP, 2005. 

[15] J. Padhye and S. Floyd. On inferring tcp behavior. In SIGCOMM, pages 
287–298, 2001. 

[16] V. Paxson. Automated packet trace analysis of TCP implementations. In 
SIGCOMM, pages 167–179, 1997. 

[17] G. Roua and J. Saffroy. IP personality. 
http://ippersonality.sourceforge.net/, 2001. 

[18] S. Shah. An introduction to HTTP fingerprinting. 
http://net-square.com/httprint/httprint paper.html, 2004. 

[19] G. Shu and D. Lee, Defending against internet host fingerprinting - 
toward an outermost barrier of cyberspace security. In Working 
Together: Research & Development (R&D) Partnerships in Homeland 
Security, 2005. 

[20] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm 
fingerprinting. In Operating Systems Design and Implementation 
(OSDI), pages 45–60, 2004. 

[21] D. Watson, M. Smart, G. Robert Malan, and F. Jahanian. Protocol 
Scrubbing: network security through transparent flow modification. 
IEEE/ACM Transaction. Networking, 12(2):261–273, 2004. 

[22] F. Yarochkin. Remote OS detection via TCP/IP stack fingerprinting. 
http://www.insecure.org, 1998. 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.


	Select a link below
	Return to Main Menu
	Return to Previous View




