
Algorithms to Accelerate Multiple Regular Expressions
Matching for Deep Packet Inspection

Sailesh Kumar
Washington University

Computer Science and Engineering
St. Louis, MO 63130-4899

+1-314-935-4306
sailesh@arl.wustl.edu

Sarang Dharmapurikar
Washington University

Computer Science and Engineering
St. Louis, MO 63130-4899

+1-314-935-8563
sarang@arl.wustl.edu

Fang Yu
University of California, Berkeley
Department of Computer Science

Berkeley, CA 94720
+1-510-642-8284

fyu@eecs.berkeley.edu

Patrick Crowley
Washington University

Computer Science and Engineering
St. Louis, MO 63130-4899

+1-314-935-9186
pcrowley@wustl.edu

Jonathan Turner
Washington University

Computer Science and Engineering
St. Louis, MO 63130-4899

+1-314-935-8552
jon.turner@wustl.edu

ABSTRACT
There is a growing demand for network devices capable of
examining the content of data packets in order to improve
network security and provide application-specific services. Most
high performance systems that perform deep packet inspection
implement simple string matching algorithms to match packets
against a large, but finite set of strings. However, there is growing
interest in the use of regular expression-based pattern matching,
since regular expressions offer superior expressive power and
flexibility. Deterministic finite automata (DFA) representations
are typically used to implement regular expressions. However,
DFA representations of regular expression sets arising in network
applications require large amounts of memory, limiting their
practical application.

In this paper, we introduce a new representation for regular
expressions, called the Delayed Input DFA (D2FA), which
substantially reduces space requirements as compared to a DFA.
A D2FA is constructed by transforming a DFA via incrementally
replacing several transitions of the automaton with a single
default transition. Our approach dramatically reduces the number
of distinct transitions between states. For a collection of regular
expressions drawn from current commercial and academic
systems, a D2FA representation reduces transitions by more than
95%. Given the substantially reduced space requirements, we
describe an efficient architecture that can perform deep packet
inspection at multi-gigabit rates. Our architecture uses multiple
on-chip memories in such a way that each remains uniformly
occupied and accessed over a short duration, thus effectively
distributing the load and enabling high throughput. Our

architecture can provide cost-effective packet content scanning at
OC-192 rates with memory requirements that are consistent with
current ASIC technology.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General –
Security and protection (e.g., firewalls)

General Terms
Algorithms, Design, Security.

Keywords
DFA, regular expressions, deep packet inspection.

1. INTRODUCTION
Many critical network services handle packets based on payload
content, in addition to the structured information found in packet
headers. Forwarding packets based on content (either for the
purpose of application-level load-balancing in a web switch or
security-oriented filtering based on content signatures) requires
new levels of support in networking equipment. Traditionally, this
deep packet inspection has been limited to comparing packet
content to sets of strings. State-of-the-art systems, however, are
replacing string sets with regular expressions, due to their
increased expressiveness. Several content inspection engines have
recently migrated to regular expressions, including: Snort [5], Bro
[4], 3Com’s TippingPoint X505 [20], and various network
security appliances from Cisco Systems [21]. Cisco, in fact, has
integrated the regular expression based content inspection
capabilities into its Internetworking Operating System (IOS) [21].
Additionally, layer 7 filters based on regular expressions [30] are
available for the Linux operating system. While flexible and
expressive, regular expressions have traditionally required
substantial amounts of memory, which severely limits
performance in the networking context.
To see why, we must consider how regular expressions are
implemented. A regular expression is typically represented by a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCOMM'06, September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009...$5.00.

339

deterministic finite automaton (DFA). For any regular expression,
it is possible to construct a DFA with the minimum number of
states [2, 3]. The memory needed to represent a DFA is, in turn,
determined by the product of the number of states and the number
of transitions from each state. For an ASCII alphabet, each state
will have 256 outgoing edges. Typical sets of regular expressions
containing hundreds of patterns for use in networking yield DFAs
with tens of thousands of states, resulting in storage requirements
in the hundreds of megabytes. Table compression techniques are
not effective for these tables due to the relatively high number of
unique ‘next-states’ from a given state. Consequently, traditional
approaches quickly become infeasible as rule sets grow.
In this paper, we introduce a highly compact DFA representation.
Our approach reduces the number of transitions associated with
each state. The main observation is that groups of states in a DFA
often have identical outgoing transitions and we can use this
duplicate information to reduce memory requirements. For
example, suppose there are two states s1 and s2 that make
transitions to the same set of states, {S}, for some set of input
characters, {C}. We can eliminate these transitions from one
state, say s1, by introducing a default transition from s1 to s2 that
is followed for all the characters in {C}. Essentially, s1 now only
maintains unique next states for those transitions not common to
s1 and s2 and uses the default transition to s2 for the common
transitions. We refer to a DFA augmented with such default
transitions as a Delayed Input DFA (D2FA).
In practice, the proper and effective construction of the default
transitions leads to a tradeoff between the size of the DFA
representation and the memory bandwidth required to traverse it.
In a standard DFA, an input character leads to a single transition
between states; in a D2FA, an input character can lead to multiple
default transitions before it is consumed along a normal transition.
Our approach achieves a compression ratio of more than 95% on
typical sets of regular expressions used in networking
applications. Although each input character potentially requires
multiple memory accesses, the high compression ratio enables us
to keep the data structure in on-chip memory modules, where the
increased bandwidth can be provided efficiently.
To explore the feasibility of this approach, we describe a single-
chip architecture that employs a modest of amount on-chip
memory, organized in multiple independent modules. Modern
VLSI technology easily enables this sort of integration of several
embedded memories on a single die; for example, IBM’s ASIC
fabrication technology [23] can integrate up to 300 Mbits of
embedded memory on one chip. We use multiple embedded
memories to provide ample bandwidth. However, in order to
deterministically execute the compressed automata at high rates, it
is important that the memory modules are uniformly populated
and accessed over short periods of time. To this end, we develop
load balancing algorithms to map our automata to the memory
modules in such a way that deterministic worst-case performance
can be guaranteed. Our algorithms can maintain throughput at 10
Gbps while matching thousands of regular expressions.
To summarize, our contributions are a) the D2FA representation
of regular expressions which significantly reduces the amount of
memory required, b) a single-chip architecture that uses the D2FA
representation, and c) a load balancing algorithm which ensures
that on-chip resources are uniformly used, thereby enabling
worst-case performance guarantees.

The remainder of the paper is organized as follows. Background
on regular expressions and related work are presented in Section
2. Section 3 describes the D2FA representation. Details of our
construction algorithm and the compression results are presented
in Section 4. Section 5 presents the system architecture, load
balancing algorithms and throughput results. The paper ends with
concluding remarks in Section 6.

2. BACKGROUND AND RELATED WORK
Deep packet inspection has recently gained popularity as it
provides the capability to accurately classify and control traffic in
terms of content, applications, and individual subscribers. Cisco
and others today see deep packet inspection happening in the
network and they argue that “Deep packet inspection will happen
in the ASICs, and that ASICs need to be modified” [19]. Some
applications requiring deep packet inspection are listed below:

• Network intrusion detection and prevention systems
(NIDS/NIPS) generally scan the packet header and payload in
order to identify a given set of signatures of well known
security threats.

• Layer 7 switches and firewalls provide content-based filtering,
load-balancing, authentication and monitoring. Application-
aware web switches, for example, provide scalable and
transparent load balancing in data centers.

• Content-based traffic management and routing can be used to
differentiate traffic classes based on the type of data in packets.

Deep packet inspection often involves scanning every byte of the
packet payload and identifying a set of matching predefined
patterns. Traditionally, rules have been represented as exact
match strings consisting of known patterns of interest. Naturally,
due to their wide adoption and importance, several high speed and
efficient string matching algorithms have been proposed recently.
Some of the standard string matching algorithms such as Aho-
Corasick [7] Commentz-Walter [8], and Wu-Manber [9], use a
preprocessed data-structure to perform high-performance
matching. A large body of research literature has concentrated on
enhancing these algorithms for use in networking. In [11], Tuck et
al. presents techniques to enhance the worst-case performance of
Aho-Corasick algorithm. Their algorithm was guided by the
analogy between IP lookup and string matching and applies
bitmap and path compression to Aho-Corasick. Their scheme has
been shown to reduce the memory required for the string sets used
in NIDS by up to a factor of 50 while improving performance by
more than 30%.
Many researchers have proposed high-speed pattern matching
hardware architectures. In [12] Tan et al. propose an efficient
algorithm that converts an Aho-Corasick automaton into multiple
binary state machines, thereby reducing the space requirements.
In [13], the authors present an FPGA-based design which uses
character pre-decoding coupled with CAM-based pattern
matching. In [14], Yusuf et al. use hardware sharing at the bit
level to exploit logic design optimizations, thereby reducing the
area by a further 30%. Other work [25, 26, 27, 28, 29] presents
several efficient string matching architectures; their performance
and space efficiency are well summarized in [14].
In [1], Sommer and Paxson note that regular expressions might
prove to be fundamentally more efficient and flexible as
compared to exact-match strings when specifying attack

340

signatures. The flexibility is due to the high degree of
expressiveness achieved by using character classes, union,
optional elements, and closures, while the efficiency is due to the
effective schemes to perform pattern matching. Open source
NIDS systems, such as Snort and Bro, use regular expressions to
specify rules. Regular expressions are also the language of choice
in several commercial security products, such as TippingPoint
X505 [20] from 3Com and a family of security appliances from
Cisco Systems [21]. Although some specialized engines such as
RegEx from Tarari [22] report packet scan rates up to 4 Gbps, the
throughput of most such devices remains limited to sub-gigabit
rates. There is great interest in and incentive for enabling multi-
gigabit performance on regular expressions based rules.

Consequently, several researchers have recently proposed
specialized hardware-based architectures which implement finite
automata using fast on-chip logic. Sindhu et al. [15] and Clark et
al. [16] have implemented nondeterministic finite automata
(NFAs) on FPGA devices to perform regular expression matching
and were able to achieve very good space efficiency.
Implementing regular expressions in custom hardware was first
explored by Floyd and Ullman [18], who showed that an NFA can
be efficiently implemented using a programmable logic array.
Moscola et al. [17] have used DFAs instead of NFAs and
demonstrated significant improvement in throughput although
their datasets were limited in terms of the number of expressions.
These approaches all exploit a high degree of parallelism by
encoding automata in the parallel logic resources available in
FPGA devices. Such a design choice is guided partly by the
abundance of logic cells on FPGA and partly by the desire to
achieve high throughput as such levels of throughput might be
difficult to achieve in systems that store automata in memory.
While such a choice seems promising for FPGA devices, it might
not be acceptable in systems where the expression sets needs to be
updated frequently. More importantly for systems which are
already in deployment, it might prove difficult to quickly re-
synthesize and update the regular expressions circuitry.
Therefore, regular expression engines which use memory rather
than logic, are often more desirable as they provide higher degree
of flexibility and programmability.

Commercial content inspection engines like Tarari’s RegEx
already emphasize the ease of programmability provided by a
dense multiprocessor architecture coupled to a memory. Content
inspection engines from other vendors [33, 34], also use memory-
based architectures. In this context, Yu et al. [10] have proposed
an efficient algorithm to partition a large set of regular
expressions into multiple groups, such that overall space needed
by the automata is reduced dramatically. They also propose
architectures to implement the grouped regular expressions on
both general-purpose processor and multi-core processor systems,
and demonstrate an improvement in throughput of up to 4 times.
In this paper, we extend these memory-based architectures and
propose algorithms which can enable the efficient implementation
of regular expressions at multi-gigabit rates while preserving the
flexibility provided by programmability.

3. DELAYED INPUT DFAS
It is well-known that for any regular expression set, there exists a
DFA with the minimum number of states [3]. The memory needed
to represent a DFA is determined by the number of transitions

from one state to another, or equivalently, the number of edges in
the graph representation. For an ASCII alphabet, there can be up
to 256 edges leaving each state, making the space requirements
excessive. Table compression techniques can be applied to reduce
the space in situations when the number of distinct “next-states”
from a given state is small. However, in DFAs that arise in
network applications, these methods are typically not very
effective because on average, there are more than 50 distinct
“next-states” from various states of the automaton.
We introduce a modification to the standard DFA that can be
represented much more compactly. Our modifications are based
on a technique used in the Aho-Corasick string matching
algorithm [7]. We extend their technique and apply it to DFAs
obtained from regular expressions, rather than simple string sets.

3.1 Motivating Example
We introduce our approach using an example. The left side of
Figure 1 shows a standard DFA defined on the alphabet
{a,b,c,d} that recognizes the three patterns, p1=a+, p2=b+c, and
p3=c*d+ (in these expressions, the asterisk represents 0 or more
repetitions of the immediately preceding sub-expression, while
the plus sign represents one or more repetitions). In this DFA,
state 1 is the initial state, and states 2, 5 and 4 are match states for
the three patterns p1, p2 and p3, respectively.
The right side of Figure 1 shows an alternate type of DFA, which
includes unlabeled edges that are referred to as default transitions.
When matching an input string, a default transition is used to
determine the next state, whenever the current state has no
outgoing edge labeled with the current input character. When
following a default transition the current input character is
retained. Consider the operation of the two automata on the input
string aabdbc. For this input, the sequence of states visited by
the left-hand automaton is 1223435, where the underlined states
are the match states that determine the output value for this input
string. The right-hand automaton visits states 1212314135. Notice
that the sequence of match states is the same, so if the second
output associates these states with the same three patterns, it
produces the same output as the first one. Indeed, it is not difficult
to show that the two automata visit the same sequence of match
states for any input string. That is, they produce the same output,
for all inputs and are hence equivalent.
Note that the right-hand automaton in Figure 1 has just nine
edges, while the one on the left has 20. We find that for the more
complex DFAs that arise in network applications, we can
generally reduce the number of edges by more than 95%,
dramatically reducing the space needed to represent the DFA.
There is a price for this reduction of course, since no input is
consumed when default edges are followed. In the example in
Figure 1, no state with an incoming default transition also has an
outgoing default transition, meaning that for every two edges
traversed, we are guaranteed to consume at least one input
character. Allowing states to have both incoming and outgoing
default transitions leads a more compact representation, at the
cost of some reduction in the worst-case performance.

3.2 Problem Statement
We refer to an automaton with default transitions as a Delayed
Input DFA (D2FA). We represent a D2FA by a directed graph,
whose vertices are called states and whose edges are called

341

transitions. Transitions may be labeled with symbols from a finite
alphabet Σ. Each state may have at most one unlabeled outgoing
transition, called its default transition. One state is designated as
the initial state and for every state s, there is a (possibly empty)
set of matching patterns, µ(s).

For any input string x∈Σ∗, we define the destination state, δ(x) to
be the last state reached by starting at the initial state and
following transitions labeled by the characters of x, using default
transitions whenever there is no outgoing transition that matches
the next character of x (so, for the D2FA on the right side of
Figure 1, δ(abcb)=3 and δ(dcbac)=1). We generalize δ to
accept an arbitrary starting state as a second argument; so for the
D2FA on the right side of Figure 1, δ(abcb,2) =3.

Consider two D2FAs with destination state functions δ1 and δ2,
and matching pattern functions µ1 and µ2. We say that the two
automata are equivalent if for all strings x, µ1(δ1(x))=µ2(δ2(x)). In
general, given a DFA that recognizes some given set of regular
expressions, our objective is to find an equivalent D2FA that is
substantially more memory-efficient.
We can bound the worst-case performance of a D2FA in terms of
the length of its longest default path (that is, a path comprising
only default transitions). In particular, if the longest default path
has k transitions, then for all input strings, the D2FA will consume
at least one character for every k transitions followed. To ensure
that a D2FA meets a throughput objective, we can place a limit on
the length of the longest default path. This leads to a more refined
version of the problem, in which we seek the smallest equivalent
D2FA that satisfies a specified bound on default path length.

3.3 Converting DFAs to D2FAs
Although, we are in general interested in any equivalent D2FA,
for a given DFA, we have no general procedure for synthesizing a
D2FA directly. Consequently, our procedure for constructing a
D2FA proceeds by transforming an ordinary DFA, by introducing
default transitions in a systematic way, while maintaining
equivalence. Our procedure does not change the state set, or the
set of matching patterns for a given state. Hence, we can maintain
equivalence by ensuring that the destination state function δ(x),
does not change.
Consider two states u and v, where both u and v have a transition
labeled by the symbol a to a common third state w, and no default
transition. If we introduce a default transition from u to v, we can

eliminate the a-transition from u without affecting the destination
state function δ(x). A slightly more general version of this
observation is stated below.
Lemma 1. Consider a D2FA with distinct states u and v, where u
has a transition labeled by the symbol a, and no outgoing default
transition. If δ(a,u)=δ(a,v), then the D2FA obtained by
introducing a default transition from u to v and removing the
transition from u to δ(a,u) is equivalent to the original DFA.

Note that by the same reasoning, if there are multiple symbols a,
for which u has a labeled outgoing edge and for which
δ(a,u)=δ(a,v), the introduction of a default edge from u to v
allows us to eliminate all these edges. Our procedure for
converting a DFA to a smaller D2FA applies this transformation
repeatedly. Hence, the equivalence of the initial and final D2FAs
follows by induction. The D2FA on the right side of Figure 1 was
obtained from the DFA on the left, by applying this
transformation to state pairs (2,1), (3,1), (5,1) and (4,1).

For each state, we can have only one default transition, so it’s
important to choose our default transitions carefully to allow us to
get the largest possible reduction. We also restrict the choice of
default transitions to ensure that there is no cycle defined by
default transitions. With this restriction, the default transitions
define a collection of trees with the transitions directed towards
the tree roots and we can identify the set of transitions that gives
the largest space reduction by solving a maximum weight
spanning tree problem in an undirected graph which we refer to as
the space reduction graph.
The space reduction graph for a given DFA is a complete,
undirected graph, defined on the same vertex set as the DFA. The
edge joining a pair of vertices (states) u and v is assigned a weight
w(u,v) that is one less than the number of symbols a for which
δ(a,u)=δ(a,v). The space reduction graph for the DFA on the left
side of Figure 1 is shown in Figure 2. Notice that the spanning
tree of the space reduction graph that corresponds to the default
transitions for the D2FA in Figure 1 has a total weight of
3+3+3+2=11, which is the difference in the number of transitions
in the two automata. Also, note that this is a maximum weight
spanning tree for this graph. Figure 3 shows D2FAs corresponding
to two different maximum weight spanning trees. Note that while
these two automata use the same number of edges as the one in
Figure 1, they have default paths of length 3 and 2, respectively,
meaning that their worst-case performance will not be as good.

2

1 3b

4

5

a

d

a

c

a b

d

a

c

b

c
b

b

a

c

d

d

d

c

2

1 3b

4

5

a

d

c
c

Figure 1. Example of automata which recognize the expressions a+, b+c, and c*d+

342

4. BOUNDING DEFAULT PATHS
If our only objective was minimizing the space used by a D2FA, it
would suffice to find a maximum weight spanning tree in the
space reduction graph. The tree edges correspond to the state pairs
between which we create default transitions. The only remaining
issue is to determine the orientation of the default transitions.
Since each vertex can have only one outgoing default transition, it
suffices to pick some arbitrary state to be the root of the default
transition tree and direct all default transitions towards this state.

Unfortunately, when this procedure is applied to DFAs arising in
typical network applications, the resulting default transition tree
has many long paths, implying that the D2FA may need to make
many transitions for each input character consumed. We can
improve the performance somewhat, by selecting a tree root that
is centrally located within the spanning tree. However, this still
leaves us with many long default paths. The natural way to avoid
long default paths is to construct a maximum weight spanning tree
with a specified bounded diameter. Unfortunately, the
construction of such spanning trees is NP-hard [39]. It’s also not
clear that such a spanning tree leads to the smallest D2FA. What
we actually require is a collection of bounded diameter trees of
maximum weight. While this problem can be solved in
polynomial time if the diameter bound is 1 (this is simply
maximum weight matching), the problem remains NP-hard for
larger diameters.
Fortunately, we have found that fairly simple methods, based on
classical maximum spanning tree algorithms, yield good results
for D2FA construction. One conceptually straight-forward method
builds a collection of trees incrementally. The method (which is
based on Kruskal’s algorithm [36]) examines the edges in
decreasing order of their weight. An edge {u,v} is selected as a
“tree-edge” so long as u and v do not already belong to the same
tree, and so long as the addition of the edge will not create a tree
whose diameter exceeds a specified bound. Once all the edges
have been considered, the tree edges define default transitions.
We orient the default transitions in each tree by directing them
towards a selected root for that tree, where the roots are selected
so as to minimize the distance to the root from any leaf.
The one complication with this method is checking the diameter
bounds. We can do this efficiently by maintaining for each vertex
u a value d(u) which specifies the number of edges in the longest
tree path from u to a vertex in the same tree. These values can be
used to check that the addition of a new edge will not violate the
diameter bound. When a new tree edge is added, the distance
values must be updated for vertices in the tree formed by the
addition of the new edge. This can be done in linear time for each

update. Consequently, the total time needed to maintain the
distance values is O(n2). Since Kruskal’s algorithm, on which our
algorithm is based, requires O(n2log n) time on complete graphs,
the diameter checking does not increase the asymptotic running
time of the algorithm.
One refinement to this fairly simple algorithm is shown below.
While examining the edges in decreasing order of their weights,
we also look for an edge among all equal weight edges, which
results in the minimum expansion in the diameter of the trees
joined. In practice, since there are only 255 different weight
values, at any point in time, there will often be plenty of equal
weight edges to choose from. The resulting refined algorithm
begins with the weighted undirected space reduction graph
G=(V,W) and modifies an edge set default which form the default
transition trees. First it considers all edges of weight 255, and
incrementally constructs default trees of small diameters. Then it
repeatedly considers smaller weight edges and adds them to the
default transition trees.
It turns out that the refinement generally leads to default transition
trees with significantly smaller diameter as compared to a normal
spanning tree, which remains oblivious about the diameter
buildup of the trees until the diameter bound is reached. In a
setup, where the diameter bound is not applied, refined spanning
tree algorithm creates default transition trees of equal weight but
relatively smaller diameter. When diameter bound is applied, the

2

1
3

4

5

3

3

3

2

32

2

2

3

3

Figure 2. Space reduction graph for DFA in Figure 1.

2

1

3

4

d

c

b

2

1

3

4

c

b

d

a

5 5

a

c

c

Figure 3. D2FAs corresponding to two different maximum

weight spanning trees

procedure refinedmaxspantree (graph G=(V, W),
 modifies set edge default);
(1) vertex u, v; set edges; set weight-set[255];
(2) default := {}; edges := W;
(3) for edge (u, v) ∈ edges ⇒
(4) if weight(u, v) > 0 ⇒
(5) add (u, v) to weight-set[weight(u, v)];
(6) fi
(7) for integer i = 255 to 1 ⇒
(8) do weight-set[i] ≠ [] ⇒
(9) Select (u, v) from weight-set[i] which leads to the
(10) smallest growth in the diameter of the default tree
(11) if vertices u and v belongs to different default trees ⇒
(12) if default U (u, v) maintains the diameter bound ⇒
(13) default := default U (u, v);
(14) fi
(15) fi
(16) od
(17) rof
end;

343

refined algorithm creates trees with higher weight too. This
happens, because a normal spanning tree, in its process, quickly
creates several trees whose diameter is “too large” and hence can
not be further linked to any tree. The refined version ensures that
tree diameter remains small; hence more trees can be linked,
resulting in higher weight.
In order to illustrate the effect of this refinement, we take a
synthetic DFA, which consists of 31 states. All pairs of states u
and v were assigned transitions on a random number (drawn from
a geometric distribution with success probability, π = 0.05, thus
mean, E(X) = 19) of symbols a such that δ(a,u)=δ(a,v). Thus the
weight of the edges in the space reduction graph was
geometrically distributed. When we ran the normal and refined
versions of spanning tree algorithms without any diameter bound,
they created spanning trees of weight 1771, as shown in Figure 4.
While the weights of both trees are maximum, their diameters are
13 and 10 respectively. If we choose nodes 28 and 29,
respectively, as the root of these two trees, the longest default
paths will contain 7 and 5 edges, while the average length of
default paths will be 3.8 and 2.8, respectively.
Clearly, the refinement in the spanning tree algorithm reduces the
memory accesses needed by a D2FA for every character. We will
later see that when diameter bounds are applied, refined spanning
tree creates more compact D2FAs as well.
When we bounded the diameter of the spanning tree to 7, and ran
our algorithm on the same synthetic DFA, it created three default
transition trees, as shown in Figure 5. The total weight of all three
trees was 1653, which suggests that the resulting DF2A will
require slightly more space as compared to the one with no
diameter restraint. However, bounding the diameter to 7 ensures
an important property that the length of all default paths can be
easily limited to 4 and hence the D2FA will require at most 4
memory accesses per character.

4.1 Results on some regular expression sets
In order to evaluate the space reductions achieved by a delayed
input DFA, or D2FA, we performed experiments on regular
expression sets used in a wide variety of networking applications.
Our most important dataset are the regular expression sets used in
deep packet inspection appliances from Cisco Systems [38]. This
set contains more than 750 moderately complex expressions,
which are used to detect the anomalies in the traffic. It is widely
used across several Cisco security appliances and Cisco
commonly employs general purpose processors with a gigabyte or
more memory to implement them. In addition to this set, we also
considered the regular expressions used in the open source Snort
and Bro NIDS, and in the Linux layer-7 application protocol
classifier. Linux layer-7 protocol classifier consists of 70
expressions. Snort contains more than a thousand and half
expressions, although, they don’t need to be matched
simultaneously. An effective way to implement the Snort rules is
to identify the expressions for each header rule and then group the
expressions corresponding to the overlapping rules (the set of
header rules a single packet can match to). We use this approach.
For the Bro NIDS, we present results for the HTTP signatures,
which consist of 648 regular expressions.
Given these regular expression sets, as the first step to construct
DFAs with a small number of states, we used the set splitting
techniques proposed by Yu et al. in [10]. It splits the regular
expressions into multiple sets so that each set creates a small
DFA. We created 10 sets of rules from the Cisco regular
expressions, and were able to reduce the total memory footprint to
92 MB, as there were a total of 180138 states, and each individual
DFA had less than 64K states, (thus 2 bytes encodes a state).
Clearly, such efficient grouping resulted in significant space
reduction over more than a gigabyte space required otherwise. We
split the Linux layer-7 expressions into three sets, such that the
total number of states was 28889. For the Snort set, we present
results for the header rule “tcp $EXTERNAL_NET any ->
$HTTP_SERVERS $HTTP_PORTS,” which consists of 22 complex
expressions. Since Snort rules were complex, with long length
restriction on various character classes, we applied rewriting
techniques proposed in [10] to some rules and split them further
into four sets. Bro regular expressions were generally simple and
efficient therefore we were able to compile all of them in a single
automaton. The key properties of our representative regular
expression groups are summarized in Table 1.
In order to estimate the reduction objectives of D2FA, we
introduce a term duplicate transition. Transitions are duplicate if

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
2829

30

31

1

2

3

4
5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

Figure 4. Default transition trees formed by the spanning tree algorithm and by our refined version

1

2

3

456

7

8

910 11

12 1314 15

16

17

18 19

20

21

22

23

24

25

26 27

28

29

30

31

Figure 5. Default transition trees (forest) formed by the
refined spanning tree with the tree diameter bounded to 7

344

there exists more than one of them leading to the same “next
state” for the same input character. For example in Figure 1, if the
transitions on input b from states 1 is termed original then the
ones from state 2, 3, 4 and 5 are duplicates. Even though, it may
not be possible to eliminate all duplicate transitions, it still gives a
good estimate on the upper bound of the number of transitions
that can be eliminated by constructing a D2FA from the DFA.
After constructing the minimum state DFAs from these regular
expressions, we used both normal and refined versions of
spanning tree to construct the corresponding D2FAs. The
reduction in the number of transitions is shown in Table 2 with no
diameter bounds applied. The length of default paths, which gives
an estimate of the added memory bandwidth a D2FA will need
over a DFA, are also shown. It is clear that, D2FAs eliminates
nearly all duplicate transitions from the DFAs. It is also apparent
that refined version of spanning tree creates substantially smaller
default paths as compared to a normal spanning tree. In order to
get a sense of the distribution of the number of labeled transitions
per states of a D2FA, we plot it in Figure 6, for the Cisco regular
expression group containing 590 expressions. Majority of states
has 2 or fewer labeled transitions. Note that most states have 2
transitions because most rules are case insensitive, like [d-eD-E0-
9\-_][/\\][^/\\\r\n?\x26\s\t:]*[.][Nn][Uu].
Since the above results are with no diameter restrictions, default
transition paths are quite long. In order to achieve smaller default
paths, we ran our algorithm with the diameter restricted to a small
constant. In this case, we first compare the reductions achieved by
normal spanning tree and by our refined version. In Table 3, we

report the number of transitions in the resulting D2FA, with the
length of default paths bounded to 4 edges. Clearly, refined
version of spanning tree yields relatively more compact D2FA.
In Figure 7, we plot the reduction in the number of transitions of a
DFA, as ratio of number transitions in the D2FA and number of
distinct transitions (transitions leading to distinct “next states”) in
the original DFA, by applying the refined version of spanning tree
and bounding the default paths at different values. It is obvious
that smaller default path restrictions produce D2FAs with
relatively higher number of labeled transitions. Note that, the
reduction numbers plotted are with respect to the total number of
distinct transitions (leading to different “next states”) at various
states in the original DFA, and not all transitions. Clearly this
metric is conservative and suggests the space reduction by D2FA
over a DFA using the best (possibly hypothetical) table

1

10

100

1000

10000

0 8 16 24 32 40 232 240 248 256

Number of transitions at a state

N
um

be
r o

f s
ta

te
s

Figure 6. Distribution of number of transitions per state in
the D2FA constructed from the Cisco590 expression set

Table 1. Our representative regular expression groups

Source # of
regular

expressio
ns

Avg. ASCII
length of

expressions

% expressions
using

wildcards (*,
+, ?)

% expressions
length

restrictions
{,k,+}

Cisco 590 36.5 5.42 1.13
Cisco 103 58.7 11.65 7.92
Cisco 7 143.0 100 14.23
Linux 56 64.1 53.57 0
Linux 10 80.1 70 0
Snort 11 43.7 100 9.09
Snort 7 49.57 100 28.57
Bro 648 23.6 0 0

Table 2. Original DFA and the D2FA constructed using the normal and the refined spanning tree, without any diameter bound

 Original DFA Delayed input DFA, D2FA
 Normal spanning tree Refined spanning tree
 DFA Total # of

states
Total # of
transitions

Total # of
distinct

transitions

Total # of
duplicate

transitions

%
duplic
ates

 Total # of
transitions

%
reducti

on

Avg.
default
length

Max.
default
length

Total # of
transitions

%
reducti

on

Avg.
default
length

Max.
default
length

 Cisco590 17713 4534528 1537238 4509852 99.45 36519 99.2 18.32 57 36519 99.2 8.47 17
 Cisco103 21050 5388800 1236587 5346595 99.21 53068 99.0 16.65 54 53068 99.0 7.82 19
 Cisco7 4260 1090560 312082 1063896 97.55 28094 97.4 19.61 61 28094 97.4 10.91 23
 Linux56 13953 3571968 590917 3517044 98.46 58571 98.3 7.68 30 58571 98.3 5.62 21
 Linux10 13003 3328768 962299 3052433 91.69 285991 91.3 5.14 20 285991 91.3 4.64 17
 Snort11 41949 10738944 540259 10569778 98.42 168569 98.4 5.86 9 168569 98.4 3.43 6
 Bro648 6216 1591296 149002 1584357 99.56 7082 99.5 6.45 17 7082 99.5 2.59 8

Table 3. Number of transitions in D2FA with default path
length bounded to 4

DFA Normal spanning tree Refined spanning tree
Cisco590 97873 70793
Cisco103 115654 82879
Cisco7 37520 36091

Linux56 69437 66739
Linux10 314915 302112
Snort11 180545 178354
Bro648 11906 8078

345

compression scheme which enables it to store only the distinct
transitions. If we would use the total transitions in a DFA as our
metric, D2FA will result in even higher reduction.

4.2 Summarizing the results
The results suggest that a delayed input DFA or D2FA can
substantially reduce the space requirements of regular expression
sets used in many networking applications. For example, using
D2FA, we were able to reduce the space requirements of regular
expressions used in deep packet inspection appliances of Cisco
Systems to less than 2 MB. We also saw significant reduction in
the Bro and Linux layer-7 expressions. Snort expressions resulted
in moderate improvements (according to our conservative metric)
as there were fewer distinct transitions per state.
D2FA reduces the space requirements at the cost of multiple
memory accesses per character. In fact, splitting an expression set
into multiple groups adds to the number of memory accesses as it
creates multiple D2FAs, all of which needs to be executed in
parallel. Although, D2FA performs equally well on expression
sets which are not split, we decided to split, in order to reduce the
total number of states in the DFA to begin with (e.g. 92 MB for 9
partitions of the Cisco rules versus 1+ GB without clever rule
partitioning). Such a design choice makes sense in our context,
because we use multiple embedded memories, which provides us
with ample bandwidth, but limited capacity. We now present our
architecture and algorithms to map the D2FAs onto them.

5. REGEX SYSTEM ARCHITECTURE
In this section, we propose an efficient regular expression engine
consisting of multiple embedded memories and processors. We
also propose algorithms to efficiently map the D2FA onto the
architecture.
One of our design objectives is flexibility, so we predominantly
use embedded memories in order to store the automata rather than
synthesizing them in logic gates [18]. Using memory rather than
logic allows the architecture to remain flexible in the face of
frequently updating regular expressions. In addition to dense
ASIC embedded memory technologies like IBM’s [23], modern
FPGAs such as the Xilinx Virtex-4 contain several hundreds of
18Kbit memory blocks [24] providing several megabytes in
aggregate. The embedded memories in FPGAs have multiple
ports and clock rates of up to 300 MHz. Of course, ASIC
technologies provide higher degree of flexibility, with the number

of ports, the size of each memory, and the clock rate all being
design specific. Thus, a memory-based design is eminently
practical. Given this, we design our embedded memory
architecture with the following points in mind.

• While small memories often clock at higher rates, every
additional memory adds to the overhead of the control circuitry.
Therefore, we intend to use an adequate number of reasonably
sized memories, so that the overall bandwidth remains
appropriate while maintaining reasonable control complexity.

• Using multiple, equally-sized embedded memories will enable
the architecture to scale capacity and bandwidth linearly with
increasing on-chip transistor density.

• A die with several equally sized memories can achieve efficient
placement and routing, resulting in minimal wasted die area.

Therefore, our design will use memories of equal size,
independent of the characteristics of any particular data set. In
fact, using several small equally sized memories is a natural
choice given that the kind of expressions and the resulting
automata are likely to change very often.
The resulting architecture consists of a symmetric tile of equally
sized embedded memories; the logical organization of this system
is shown in Figure 8. Note that FPGAs, with hundreds of fix-sized
memory modules, fall within the scope of this architecture. As
can be seen, there are multiple memories, each accessible by an
array of regular expression engines. Each engine is capable of
scanning one packet at a time. Multiple engines are present to
exploit the packet- and flow-level parallelism available in most
packet processing contexts. While throughput for an individual
packet will be limited to that of a single memory, overall system
throughput can approach the aggregate memory bandwidth.
To do so, we must map the D2FA to these memories in such a
way that, a) there is minimal fragmentation of the memory space,
so that every memory remains uniformly occupied; and b) each
memory receives a nearly equal number of accesses, so that none
of them becomes a throughput bottleneck. We now propose
algorithms to achieve these objectives.

5.1 Randomized Mapping
A straightforward uniformly random mapping of states to memory
modules can provide scalable average-case performance. The
expectation is that over a long period of time, each memory will
receive a nearly equal fraction of all references. Thus, with a
reasonable number of concurrent packets, average throughput can
remain high. Consider a case of m memory modules and p
concurrently scanned packets. If each packet generates a read
request at an interval of l cycles (i.e, the memory read latency),
we need to scan m×l packets concurrently in order to keep the m
memories busy. In practice, we need more packets due to random
conflicts. The problem can be modeled as a balls and bins

0.01

0.1

1

1 2 3 4 5 6 7

Maximum default path length

tra

ns
iti

on
s

(a
s

fra
ct

io
n

of
 th

e

of
di

st
in

ct
 tr

an
si

tio
ns

 in
 o

rig
in

al
 D

FA
)

Cisco590
Cisco103
Cisco7
Linux56
Linux10
Snort11
Bro648

Figure 7. Plotting total number of labeled transitions in
D2FAs for various maximum default path length bounds

Memory Memory Memory Memory....

D2FA
scanner

D2FA
scanner

D2FA
scanner

....

Figure 8. Logical structure of the memory subsystem

346

procedure max-min-coloring (dgraph D(V, W), set color C);
(1) heap h, c, l;
(2) for tree t ∈ D ⇒
(3) for vertex u ∈ t ⇒ size(t) := size(t) + size(u); rof
(4) h.insert(t, size(t));
(5) rof
(6) for color j ∈ C ⇒ c.insert(j, 0); rof
(7) do h ≠ [] ⇒
(8) t := h.findmax(); h.remove(t);
(9) for all depth values i ∈ t ⇒
(10) l.insert(i, size of all vertices at depth i);
(11) rof
(12) color j := c.findmax();
(13) do l ≠ [] ⇒
(14) depth i := l.findmin(); size s := l.key(i); l.remove();
(15) Color vertices at depth i in tree t with color j;
(16) c.changekey(j, c.key(j) + s);
(17) j := c.findnextmax();
(18) od
(19) od
end;

problem. There are m bins (memory modules) and balls (memory
requests) arrive to them randomly. Only one can be serviced at
each bin per cycle, so any remaining balls must wait for
subsequent memory cycles. If m balls arrive randomly, 1-e-1
will served and rest has to wait for next cycle. Thus only 65% of
the memories will be busy. As more balls arrive, more memories
will remain busy. Thus, scanning many packets concurrently
improves the overall throughput, while individual packets are
served relatively slowly.
We report the throughput of such a randomized architecture in
Figure 9, assuming a dual-port embedded memory running at 300
MHz and a read access latency of 4 cycles. In this experiment, we
have limited the longest default paths in the D2FA to 7. The input
data was generated from the MIT DARPA Intrusion Detection
Data Sets [31]. We inserted additional data into these sets so that
the automaton will detect approximately 1% matches. It is evident
from the plots that as we increase the number of concurrently
scanned packets, the overall throughput scales up. Moreover, as
the number of embedded memories increases, the throughput
scales almost linearly up to 8 memories, beyond which there is
little improvement. This saturation is due to significant spatial
locality in the automata traversal in which some states are visited
more often than the others. In fact, in some cases, we found that a
single state is visited almost 30% of the time. If such a state
resides in memory module k, it is likely that memory module k
will limit the overall performance irrespective of the number of
modules. However, such situations are rare, and the average
performance remains excellent.
A randomized system is also likely to have a very low worst-case
throughput as evident from Figure 9. This can be explained as
follows. A D2FA often needs to traverse multiple default
transitions for a character; if the maximum default path length is
limited to 7, then 8 state traversals might be needed for a
character. Since the state to memory mapping is random, there
may exist default paths along which all states reside in the same
memory module (or in a small number of modules). If the input
data is such that the automaton repeatedly traverses such default
paths, then throughput will degrade.
Moreover, when we map multiple automata (one for each regular
expression group) onto memory modules randomly, default paths
of different automata may map to the same memory module. In
this case, packets traversing those paths will be processed serially,
and overall system throughput could diminish even further. Since

this randomized approach is subject to these pathological worst-
case conditions, we now propose deterministic mapping
algorithms capable of maintaining worst-case guarantees.

5.2 Deterministic and Robust Mapping
The first goal of a robust and deterministic mapping is to ensure
that all automata, which are executed simultaneously, are stored
in different memory modules. This will ensure that each executes
in parallel without any memory conflicts. Achieving this goal is
straight-forward, provided that there are more memory modules
than automata. The second goal is to ensure that all states along
any default path map to different memory modules. Thus, no
pathological condition can arise for long default paths as a
memory module will be referred at most once. Another benefit is
that we will need fewer concurrent packets to achieve a given
level of throughput, due to the better utilization of the bandwidth.
Problem Formulation: We can formulate the above problem as a
graph coloring problem, where colors represent memory modules
and default paths of D2FA represent the graph. As we have seen,
these paths form a forest, where vertices represent states and
directed edges represent default transitions. Our goal is to color
the vertices of the forest so that all vertices along any path from a
leaf to the root are colored with different colors. Moreover, we
need to ensure that every color is nearly equally used, so that
memories remains uniformly occupied. Clearly, if d is the longest
default path, i.e. the depth of the deepest tree, then we need at
least d+1 colors1. We present two heuristic algorithms, to color
the trees in the forest.

5.2.1 Deterministic and Robust Mapping
The max-min algorithm is similar to the first-fit, decreasing bin-
packing heuristic [37], one of the best known heuristics for
solving the NP-complete bin packing problem. The algorithm is
formally described above, where the directed graph D represents

1 A natural way to construct a D2FA is to limit the default path

length to the number of memory modules (colors) available to it

0

2

4

6

8

10

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of concurrently scanned packets

Th
ro

ug
hp

ut
 (G

bp
s)

16 memory modules
1 memory module

4 memory modules

8 memory modules

16 memory modules

average performance

Synthetically generated worst-case input data

Figure 9. Throughput with default path length bounded to 7 and

using the randomized mapping

347

procedure adaptive-coloring (dgraph D(V, W), set color C);
(1) heap h;
(2) for color c ∈ C ⇒ used[c] := 0; deprived[c] := 0; rof
(3) for vertex u ∈ V ⇒
(4) set color colors[u] := C;
(5) h.insert(u, depth(u));
(6) rof
(7) do h ≠ [] ⇒
(8) u := h.findmax(); h.remove(u);
(9) if |colors[u]| > 1 ⇒ assign-color(u, D, C); fi
(10) od
end;
procedure assign-color (vertex u, dgraph D(V, W) , set color C);
(1) color c;
(2) Pick c from colors[u] with min used[c] and max deprived[c];
(3) colors[u] := c;
(4) used[c] := used[c] + size(u);
(5) for v ∈ descendents(u) ⇒ colors[v] := colors[v] − c; rof
(6) for v ∈ ancestors(u) ⇒ colors[v] := colors[v] − c; rof
(7) calculate-deprived(D, C);
(8) if def-trans(u) ≠ NULL ⇒ assign-color(def-trans(u), D, C); fi
end;
procedure calculate-deprived (dgraph D(V, W) , set color C);
(1) for color c ∈ C ⇒ deprived[c] := 0; rof
(2) for vertex u ∈ V ⇒
(3) if |colors[u]| = 1 ⇒
(4) color c := colors[u];
(5) for v ∈ descendents(u) ⇒
(6) if |colors[v]| > 1 ⇒ deprived[c] += size(v); fi
(7) rof
(8) fi
(9) rof
end;

the default transitions and C the set of all colors. The algorithm
proceeds by ordering the default transition trees according to their
size (i.e., the number of vertices times the size of each vertex).
Then, in decreasing order of size, it colors each tree such that all
vertices at different depths are colored with one of the d+1 colors.
Since there are a total of d+1 colors and the maximum depth of a
tree is d, vertices along all default paths are guaranteed to get
different colors. In order to ensure that colors are nearly equally
used, max-min heuristics are used. For a currently selected tree, it
groups the vertices at different depths and sorts the group with
respect to the size of all vertices in the group. Then, it assigns the
most used color to the smallest group and the least used color to
the largest group.
When the forest consists of a large number of trees, max-min
coloring ensures that colors are nearly equally used; thereby
ensuring that different memory modules will remain uniformly
occupied. However, when there are a small number of trees, the
max-min algorithm often leads to uneven memory usage. A
simple example is shown on the left hand side of Figure 10, where
there are two trees which are colored with 4 colors. With the max-
min algorithm, color 3 is used to color 7 vertices, while colors 1,
2 and 4 are each used to color only 3 vertices. An alternative
coloring, which uses each color uniformly and also ensures that
vertices along a default path uses different colors, is shown on the
right hand side in the same figure. We now propose an algorithm
which produces such coloring.

5.2.2 Adaptive coloring algorithm
The max-min algorithm performs poorly because it does not
exploit situations when multiple colors are available to color a
vertex. For instance, in the example shown in figure 10, the max-
min algorithm assigned color 3 to all vertices at depth 3, although
five of these six vertices can be colored with either color 3 or 4. In
practice, a D2FA creates default trees with many such
opportunities. This adaptive algorithm exploits this power of
multiple choices and results in a more uniform color usage.
It begins by assigning a set of all C colors to all vertices and then
removes colors from each set until every vertex is fully colored
(i.e. a single color left in their set). In order to remove appropriate
colors, it keeps track of two variables for every color. The first
variable “used” tracks the total number of vertices colored by
each color, and the second variable “deprived” tracks the future
choices of colors that remain in the sets of those vertices not yet
fully colored. More specifically, for every color, deprived
maintains the number of the vertices, which are deprived of using
it, as it has been removed from their color set and used maintains
the number of vertices colored with it. Clearly, the goal is to more
often use colors a) which most of the vertices are deprived of and
b) with which fewest vertices are fully colored with.
After initializing the color sets of each vertex, the next step is to
decide an ordering of the vertices, in which colors will be

removed from their color set. An effective ordering is to first
choose vertices which do not have a high degree of freedom in
choosing colors. Since vertices along longer default paths have
fewer choices (e.g. vertices along x deep default paths can pick
one of d−x+1 colors), they should be colored first. Therefore,
adaptive algorithm processes vertices of all trees simultaneously,
in a decreasing order of the depth values. It chooses a vertex, and
removes all but one color from its color set, thus effectively
coloring it. Whenever a vertex u is colored with color c, color c is
removed from the color set of all ancestors and descendents of u,
since it can’t be used to color any of them. Then, all ancestor
vertices of u are recursively colored. The algorithm is formally
presented above. A set colors is kept for every vertex and initially
it contains all C colors. Once all but one color is removed from
this set, the vertex gets colored. The steps involved in the coloring
of two trees by the adaptive algorithm using four colors are
illustrated in Figure 11.

5.2.3 Coloring results
In order to evaluate, how uniformly the min-max and adaptive
algorithms utilize various colors, we generated D2FA such that
they have different numbers of default transition trees in the
corresponding forest. This was achieved by limiting the default
path length to different values. We also limited ourselves to use
only d+1 colors (where d is the longest default path), as allowing

4

2

4

33 233 3

3

2 1

4

1

1

3

3

23 43 2

2

4

1

4

1 1

2

3

41

Figure 10. Left diagram shows two trees colored by max-min

algorithm. Right diagram shows a better coloring

348

the use of more colors makes the coloring far easier. Our principal
metric of coloring efficiency is the maximum discrepancy in color
usage. If used(i) is the size (number of vertices times the number
of transitions it has) of all vertices using the i-th color, then the
maximum color usage discrepancy will be,

)(max))(min)(max(iusediusediused
iii

−

Clearly, smaller values of discrepancy reflect more uniform usage
of various colors. We plot the maximum discrepancy in color
usage in Figure 12, for different number of default transition trees
in the forest. It is apparent that adaptive algorithm uses colors
more uniformly. Using the adaptive coloring algorithm, once we
limited the default paths to 7 or less, we were able to map all of
our D2FA to memory modules such that there was a maximum
discrepancy of less than 7 bytes in the memory occupancy.
We finally report the throughput of the D2FAs generated from the
Cisco rules, with the default path length limited to 7, in Figure 13.
Note that since we are using coloring, we need at least 8 memory
modules. We assume a dual-port embedded memory running at

300 MHz, read access latency of 4 cycles and the previous data
set [31]. The performance achieved by deterministic mapping is
clearly superior to the randomized mapping, as a) it ensures good
worst-case throughput, and b) it requires fewer concurrent packets
to achieve high average throughput.

6. CONCLUDING REMARKS
In this paper, we introduce a new representation for regular
expressions, called the delayed input DFA (D2FA), which
significantly reduces the space requirements of a DFA by
replacing its multiple transitions with a single default transition.
By reduction, we show that the construction of an efficient D2FA
from a DFA is NP-hard. We therefore present heuristics for D2FA
construction that provide deterministic performance guarantees.
Our results suggest that a D2FA constructed from a DFA can
reduce memory space requirements by more than 95%. Thus, the
entire automaton can fit in on-chip memories. Since embedded
memories provide ample bandwidth, further space reductions are
possible by splitting the regular expressions into multiple groups
and creating a D2FA for each of them.

used[1] = 0 deprived[1] = 0
used[2] = 0 deprived[2] = 0
used[3] = 0 deprived[3] = 0
used[4] = 0 deprived[4] = 0

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

{1,2,3,4}{1,2,3,4}

2

3

1

4

used[1] = 2 deprived[1] = 0
used[2] = 2 deprived[2] = 1
used[3] = 2 deprived[3] = 2
used[4] = 3 deprived[4] = 6

{4}

{3} {1,2,3}

{2}

{1}

{1,2} {1,2} {1,2,3} {1,2,3} {1,2,3}

Colored implicitly
as its color set is left
with a single color

4

3

2

1

{2}

{1,3,4} {1}

{3}

{4}{4}

2

12 32 3

3

1

4

1

used[1] = 4 deprived[1] = 0
used[2] = 4 deprived[2] = 0
used[3] = 4 deprived[3] = 0
used[4] = 4 deprived[4] = 0

{4}

{3} {2}

{2}

{1}

{2} {1} {3} {1} {3}

4 4

3

2

14

{2}

{4} {1}

{3}

{4}{4}

2 2

3

1

4

1

used[1] = 3 deprived[1] = 0
used[2] = 4 deprived[2] = 1
used[3] = 3 deprived[3] = 0
used[4] = 3 deprived[4] = 4

{4}

{3} {1,2,3}

{2}

{1}

{2} {1} {1,2,3} {1,2,3} {1,2,3}

4 4

3

2

1

{2}

{1,3,4} {1}

{3}

{4}{4}

2

2 2 3

3

1

4

1

used[1] = 3 deprived[1] = 0
used[2] = 4 deprived[2] = 3
used[3] = 3 deprived[3] = 0
used[4] = 3 deprived[4] = 2

{4}

{3} {2}

{2}

{1}

{2} {1} {3} {1,3} {1,3}

4 4

3

2

1

{2}

{1,3,4} {1}

{3}

{4}{4}

{1,2,3,4}

2

3

1

4

used[1] = 1 deprived[1] = 0
used[2] = 1 deprived[2] = 0
used[3] = 1 deprived[3] = 2
used[4] = 1 deprived[4] = 6

{4}

{3} {1,2,3}

{2}

{1}

{1,2} {1,2} {1,2,3} {1,2,3} {1,2,3}

{1,2,3,4}

{1,2,3,4} {1,2,3,4}

{1,2,3,4}

{1,2,3,4}{1,2,3,4}

Figure 11. Various steps involved in the coloring of two trees with adaptive algorithm (assuming equally sized vertices)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Number of default transition trees in the forest

M
ax

 d
is

cr
ep

an
cy

 in
 c

ol
or

 u
sa

ge

Figure 12. Plotting maximum discrepancy in color usage, circles

for max-min and squares for adaptive algorithm

0

2

4

6

8

10

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Number of concurrently scanned packets

Th
ro

ug
hp

ut
 (G

bp
s)

8 memory modules

8 memory modules
16 memory modules

average performance

Synthetically generated worst-case input data

Figure 13. Throughput with default path length bounded to 7

and using adaptive-coloring based deterministic mapping

349

As a side effect, a D2FA introduces a cost of possibly several
memory accesses per input character, since D2FAs may require
multiple default transitions to consume a single character.
Therefore, a careful implementation is required to ensure good,
deterministic performance. We present a memory-based
architecture, which uses multiple embedded memories, and show
how to map the D2FAs onto them in such a way that each
character is effectively processed in a single memory cycle. As a
proof of concept, we were able to construct D2FAs from regular
expression sets used in many widely used systems, including
those employed in the widely used security appliances from Cisco
Systems, that required less than 2 MB of embedded memory and
provided up to 10 Gbps throughput at a modest clock rate of 300
MHz. Our architecture provides deterministic performance
guarantees and suggests that with today’s VLSI technology, a
worst-case throughput of OC192 can be achieved while
simultaneously executing several thousand regular expressions.

7. ACKNOWLEDGMENTS
We are grateful to Will Eatherton and John Williams Jr. for
providing us the regular expression sets used in Cisco security
appliances. This work was supported by the NSF Grants CNS-
0325298 and CCF-0430012 and URP grant from Cisco Systems.

8. REFERENCES
[1] R. Sommer, V. Paxson, “Enhancing Byte-Level Network Intrusion

Detection Signatures with Context,” ACM conf. on Computer and
Communication Security, 2003, pp. 262--271.

[2] J. E. Hopcroft and J. D. Ullman, “Introduction to Automata Theory,
Languages, and Computation,” Addison Wesley, 1979.

[3] J. Hopcroft, “An nlogn algorithm for minimizing states in a finite
automaton,” in Theory of Machines and Computation, J. Kohavi, Ed.
New York: Academic, 1971, pp. 189--196.

[4] Bro: A System for Detecting Network Intruders in Real-Time.
http://www.icir.org/vern/bro-info.html

[5] M. Roesch, “Snort: Lightweight intrusion detection for networks,” In
Proc. 13th Systems Administration Conference (LISA), USENIX
Association, November 1999, pp 229–238.

[6] S. Antonatos, et. al, “Generating realistic workloads for network
intrusion detection systems,” In ACM Workshop on Software and
Performance, 2004.

[7] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Comm. of the ACM, 18(6):333–340, 1975.

[8] B. Commentz-Walter, “A string matching algorithm fast on the
average,” Proc. of ICALP, pages 118–132, July 1979.

[9] S. Wu, U. Manber,” A fast algorithm for multi-pattern searching,”
Tech. R. TR-94-17, Dept. of Comp. Science, Univ of Arizona, 1994.

[10] Fang Yu, et al., “Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection”, UCB tech. report, EECS-
2005-8.

[11] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion
detection,” IEEE Infocom 2004, pp. 333--340.

[12] L. Tan, and T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection and Prevention,” ISCA 2005.

[13] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for Efficient
and High-Speed NIDS Pattern Matching,” Proc. IEEE Symp. on
Field-Prog. Custom Computing Machines, Apr. 2004, pp. 258–267.

[14] S. Yusuf and W. Luk, “Bitwise Optimised CAM for Network
Intrusion Detection Systems,” IEEE FPL 2005.

[15] R. Sidhu and V. K. Prasanna, “Fast regular expression matching
using FPGAs,” In IEEE Symposium on Field- Programmable
Custom Computing Machines, Rohnert Park, CA, USA, April 2001.

[16] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic
circuit for matching complex network intrusion detection patterns,”
In Proceedings of 13th International Conference on Field Program.

[17] J. Moscola, et. al, “Implementation of a content-scanning module for
an internet firewall,” IEEE Workshop on FPGAs for Custom Comp.
Machines, Napa, USA, April 2003.

[18] R. W. Floyd, and J. D. Ullman, “The Compilation of Regular
Expressions into Integrated Circuits”, Journal of ACM, vol. 29, no.
3, pp 603-622, July 1982.

[19] Scott Tyler Shafer, Mark Jones, “Network edge courts apps,”
http://infoworld.com/article/02/05/27/020527newebdev_1.html

[20] TippingPoint X505, www.tippingpoint.com/products_ips.html

[21] Cisco IOS IPS Deployment Guide, www.cisco.com

[22] Tarari RegEx, www. tarari.com/PDF/RegEx_FACT_SHEET.pdf

[23] Cu-11 standard cell/gate array ASIC, IBM. www.ibm.com

[24] Virtex-4 FPGA, Xilinx. www.xilinx.com

[25] N.J. Larsson, “Structures of string matching and data compression,”
PhD thesis, Dept. of Computer Science, Lund University, 1999 .

[26] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep Packet Inspection using Parallel Bloom Filters,” IEEE Hot
Interconnects 12, August 2003. IEEE Computer Society Press.

[27] Z. K. Baker, V. K. Prasanna, “Automatic Synthesis of Efficient
Intrusion Detection Systems on FPGAs,” in Field Prog. Logic and
Applications, Aug. 2004, pp. 311–321.

[28] Y. H. Cho, W. H. Mangione-Smith, “Deep Packet Filter with
Dedicated Logic and Read Only Memories,” Field Prog. Logic and
Applications, Aug. 2004, pp. 125–134.

[29] M. Gokhale, et al., “Granidt: Towards Gigabit Rate Network
Intrusion Detection Technology,” Field Programmable Logic and
Applications, Sept. 2002, pp. 404–413.

[30] J. Levandoski, E. Sommer, and M. Strait, “Application Layer Packet
Classifier for Linux”. http://l7-filter.sourceforge.net/.

[31] “MIT DARPA Intrusion Detection Data Sets,” http://www.
ll.mit.edu/IST/ideval/data/2000/2000_data_index.html.

[32] Vern Paxson et al., “Flex: A fast scanner generator,”
http://www.gnu.org/software/flex/

[33] SafeXcel Content Inspection Engine, hardware regex acceleration IP.

[34] Network Services Processor, OCTEON CN31XX, CN30XX Family.

[35] R. Prim, “Shortest connection networks and some generalizations,”
Bell System Technical Journal, 36:1389-1401, 1957.

[36] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proc. of the American Mathematical
Society, 7:48-50, 1956.

[37] F. M. Liang. A lower bound for on-line bin packing. In Information
Processing letters, pages 76-79, 1980.

[38] Will Eatherton, John Williams, “An encoded version of reg-ex
database from cisco systems provided for research purposes”.

[39] Garey, M. R., and Johnson, D. S., “Bounded Component Spanning
Forest”, pp 208, Computers and Intractability: A Guide to the
Theory of NP-Completeness, 1979.

350

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

