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Part #1 30 points

Consider a very simple bigram language model, where the vocabulary consists
of the single word a, and the parameters of the model are

q(a|*) = 1.0

q(a|a) = 0.4

q(STOP|a) = 0.6

Question 1 (5 points) What probabilities are assigned to the strings

a

a a

and
a a a

?

Question 2 (5 points) What probability is assigned to a string of n a’s,

where n ≥ 1 (write the probability as a function of n).
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Question 3 (5 points) Write down a probabilistic context-free grammar

(PCFG) that defines the same distribution over strings as the language model
above.

Question 4 (5 points) Write down a hidden Markov model (HMM) that

defines the same distribution over strings as the language model above.
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Question 5 (5 points) Now consider a bigram language model where the

vocabulary consists of two words a and b, and the parameters of the model are

q(a|*) = 0.5

q(b|*) = 0.5

q(a|a) = 0.2

q(b|a) = 0.2

q(a|b) = 0.2

q(b|b) = 0.2

q(STOP|a) = 0.6

q(STOP|b) = 0.6

Write down a PCFG that defines the same distribution over strings as this
language model.
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Question 6 (5 points) Write down an HMM that defines the same distribu-

tion over strings as the language model from the previous question.
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Part #2 15 points

We define the following type of “lexicalized” grammar:

• N is a set of non-terminal symbols

• Σ is a set of terminal symbols

• R is a set of rules which take one of two forms:

– X(h)→ Y1(h) Y2(w) for X ∈ N , and Y1, Y2 ∈ N , and h,w ∈ Σ

– X(h)→ h for X ∈ N , and h ∈ Σ

• S ∈ N is a distinguished start symbol

Note that this is similar to the “lexicalized Chomsky normal form” grammar we
introduced in lecture, except that we do not allow rules of the following form:

X(h)→ Y1(w) Y2(h) for X ∈ N , and Y1, Y2 ∈ N , and h,w ∈ Σ.

Question 7 (15 points)

Define a grammar in the above form that gives at least one valid parse tree for
the sentence the man and the man saw the man. Draw a parse tree under your
grammar for this sentence. Make sure to show the head words in your parse
tree.
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Part #3 15 points

Question 8 (15 points)

Nathan L. Pedant decides to build a trigram language model. He randomly
selects 1000 sentences from the New York Times as training data, and randomly
selects an additional (different) 1000 sentences from the New York Times as test
data. He estimates the parameters of the trigram model as

p(w3|w1, w2) =
Count(w1, w2, w3)

Count(w1, w2)
if Count(w1, w2) > 0

and

p(w3|w1, w2) =
1

N
if Count(w1, w2) = 0

where the Count values are taken from the training data, N is the number of
words in the vocabulary, and p(w3|w1, w2) is the probability of seeing w3 given
that the previous two words were w1 and w2. Note that this is an unsmoothed
trigram model, where the parameters are simple maximum-likelihood estimates.

Nathan then measures the perplexity of his model on the test corpus.

Question: The perplexity on the test corpus will almost certainly be infin-
ity. Specify precise conditions on the training/test set pair under which the
perplexity on the test corpus for Nathan’s model will be finite, and argue for
why these conditions are unlikely to happen in practice.
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Part #4 (30 points)

Question 9 (10 points) Consider the following problem concerning the IBM

models for machine translation. We observe the following training examples:

e(1) = the dog barks f (1) = adog athe abarks

e(2) = the cat barks f (2) = acat athe abarks

e(3) = a cat barks f (3) = acat aa abarks

Write down the parameters of an IBM model 2 model, such that p(f (i)|e(i)) = 1
for i ∈ {1, 2, 3} (for simplicity assume that English and French sentences are
always of length 3).
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Question 10 (20 points) Now consider an example where the training data

is as follows:

e(1) = the dog barks f (1) = abarks adog athe

e(2) = the dog barks f (2) = athe adog abarks

e(3) = the cat barks f (3) = abarks acat athe

e(4) = the cat barks f (4) = athe acat abarks

e(5) = a cat barks f (5) = abarks acat aa

e(6) = a cat barks f (6) = aa acat abarks

Consider a translation model where for any French sentence f1f2f3, English
sentence e1e2e3, and alignment variables a1a2a3, we have

p(f1f2f3, a1a2a3|e1e2e3) =

3∏
j=1

d(aj |aj−1)

3∏
j=1

t(fj |eaj )

here d(aj |aj−1) is an alignment parameter, which is conditioned on the previous
alignment variable. We define a0 = *, where * is a special start symbol.

Define d and t parameters of a model of this form, such that p(f (i)|e(i)) = 0.25
for i ∈ {1, 2, . . . , 6} (for simplicity assume that English and French sentences
are always of length 3).
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Part #5 (15 points)

In this question we develop a global linear model for parsing with a context-
free grammar in Chomsky normal form. The input to the model is a sentence
x1 . . . xn where xi is the i’th word in the sentence. We use T (x1 . . . xn) to
denote the set of all parse trees for the sentence x1 . . . xn. For any parse tree
y ∈ T (x1 . . . xn), for any rule X → Y Z in the grammar, for any indices i, k, j
such that 1 ≤ i ≤ k < j ≤ n, we define

δ(y,X → Y Z, i, k, j) = 1

if the rule X → Y Z is seen in the parse tree y, with non-terminal X spanning
words i . . . j inclusive; non-terminal Y spanning words i . . . k inclusive; and non-
terminal Z spanning words (k + 1) . . . j inclusive.

For example, for the parse tree
S

NP

D

the

N

dog

VP

saw

we have δ(S → NP VP, 1, 2, 3) = δ(NP → D N, 1, 1, 2) = 1, with all other δ
values being equal to 0.

We also assume that we have a feature vector g(x1 . . . xn, X → Y Z, i, k, j) ∈ Rd
for any sentence x1 . . . xn together with a rule X → Y Z, i, k, j; and a parameter
vector v ∈ Rd. The score for an entire parse tree under parameter values v is

f(y; v) =
∑

X→Y Z,i,k,j

δ(y,X → Y Z, i, k, j) (v · g(x1 . . . xn, X → Y Z, i, k, j))

Thus the score for an entire parse tree is a sum of scores for the rules it contains,
where each rule receives the score

v · g(x1 . . . xn, X → Y Z, i, k, j)
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Question 11 (15 points) Assume that the underlying context-free grammar

is as follows:

S → NP VP IN → of
NP → DT NN IN → with
NP → NP PP DT → the
VP → VP PP NN → man
PP → IN NP NN → telescope
VP → VB NP VB → saw

Now assume that we have training data consisting of examples x(i), y(i) for
i = 1 . . . n where each x(i) is a sentence, and each y(i) is a parse tree for the
sentence that is valid under the above grammar. All parse trees in the training
set satisfy the following constraints:

• Whenever the preposition of is seen in a sentence, it is the first word of a
PP that modifies an NP (i.e., the PP is on the right hand side of a rule
NP → NP PP).

• Whenever the preposition with is seen in a sentence, it is the first word of
a PP that modifies a VP (i.e., the PP is on the right hand side of a rule
VP → VP PP).

Give a definition of the feature vector g(x1 . . . xn, X → Y Z, i, k, j) that will
allow us to correctly model the training data given above.

COMS W4705 Final page 13 of 19



Part #6 (15 points)

Consider an application of global linear models to dependency parsing. In this
scenario each input x = x1 . . . xn is a sentence. GEN(x1 . . . xn) returns the set
of all dependency parses for x. The feature vector f(x, y) for any sentence x
paired with a dependency parse tree y is defined as

f(x, y) =
∑

(h,m)∈y

g(x, h,m)

where g is a function that maps a dependency (h,m) together with the sen-
tence x to a local feature vector. Here h is the index of the head-word of the
dependency, and m is the index of the modifier word.

Question 12 (15 points) Now assume that we have training data consisting

of examples x(i), y(i) for i = 1 . . . n where each x(i) is a sentence, and each y(i)

is a dependency parse tree for the sentence. All dependency parse trees in the
training set satisfy the following constraints:

• All dependencies have a head word that has an odd number of letters, and
a modifier word that has an even number of letters.

• All dependencies have the head word to the left of the modifier word in
the sentence.

Give a definition of the feature vector g(x1 . . . xn, h,m) that will allow us to
correctly model the training data given above.

COMS W4705 Final page 14 of 19



Part #7 (30 points)

Clarissa decides to build a log-linear model for language modeling. She has a
training sample (xi, yi) for i = 1 . . . n, where each xi is a word corresponding
to the previous word in a document (e.g., xi = said) and yi is the next word
seen after this word (e.g., yi = that). As usual in log-linear models, she defines
a function f(x, y) that maps any x, y pair to a vector in Rd. Given parameter
values θ ∈ Rd, the model defines

p(y|x; θ) =
eθ·f(x,y)∑

y′∈V e
θ·f(x,y′)

where V is the vocabulary, i.e., the set of possible words; and θ · f(x, y) is the
inner product between the vectors θ and f(x, y).

Given the training set, the training procedure returns parameters θ∗ = arg maxθ L(θ),
where

L(θ) =
∑
i

log p(yi|xi; θ)−
λ

2

∑
k

θ2k

and λ > 0 is some constant.

Recall that for any parameter θj , we have

dL(θ)

dθj
=

n∑
i=1

fj(xi, yi)−
n∑
i=1

∑
y

p(y|xi; θ)fj(xi, y)− λθj

Clarissa makes the following choice of her first three features in the model:

f1(x, y) =

{
1 if y = model and x = the

0 otherwise

f2(x, y) =

{
1 if y = model and x = the

0 otherwise

f3(x, y) =

{
1 if y = model and x = the

0 otherwise

So f1(x, y), f2(x, y) and f3(x, y) are identical features.

(Question continues over the page.)

COMS W4705 Final page 15 of 19



Question 13 (10 points) True or false? For any training set consisting of

examples (xi, yi) for i = 1 . . . n, where there is no training example i such that
xi = the and yi = model, with f1, f2 and f3 defined as above, the optimal
parameters θ∗ satisfy the property that θ∗1 = θ∗2 = θ∗3 = 0. (Answer True or
False below. Make sure to give a justification for your answer; you will only
receive 5 points for a correct answer with an incorrect justification)
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Question 14 (10 points) True or false? For any training set consisting of

examples (xi, yi) for i = 1 . . . n, where there is no training example i such that
xi = the, with f1, f2 and f3 defined as above, the optimal parameters θ∗ satisfy
the property that θ∗1 = θ∗2 = θ∗3 = 0. (Answer True or False below. Make sure to
give a justification for your answer; you will only receive 5 points for a correct
answer with an incorrect justification)
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Question 15 (10 points) Now say we define the optimal parameters to be

θ∗ = arg max
θ
L(θ)

where

L(θ) =
∑
i

log p(yi|xi; θ)−
λ

2

∑
k

θ4k

True or false? For any training set, with f1, f2 and f3 defined as above, the
optimal parameters θ∗ satisfy the property that θ∗1 = θ∗2 = θ∗3 . (Answer True
or False below. Make sure to give a justification for your answer; you will only
receive 5 points for a correct answer with an incorrect justification)
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Part #8 (20 points)

Say we are running the perceptron algorithm. We have reached example xi and
the set {f(xi, y) : y ∈ GEN(xi)} consists of the following vectors:

(a) 〈1, 0, 0, 1〉

(b) 〈1, 1, 0, 0〉

(c) 〈0, 1, 1, 1〉

Assume also that f(xi, yi) = 〈1, 1, 0, 0〉.

Question 16 (10 points) Give a setting for the parameter vector v that

ensures that the output of the global linear model on xi is yi.

Question 17 (10 points) Now assume that v = 〈0, 1, 0, 1〉 immediately be-

fore this example is considered by the algorithm. What will the value of v after
the update on this example? (Make sure to give a full justification of your
answer.)
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