
COMS W4701 Artificial Intelligence
Columbia University
Fall 2013
Instructor: Jonathan Voris
Supplementary Notes for Lecture 3: A Lisp Crash Course

Slide 10: Hello World

(defun hello ()

 (print "hello world")

)

This prints twice because it is printed once in the function and also returned from

the function call. The last thing to be returned from a Lisp program is printed to

the screen at the end of execution

Can compensate by not printing and simply returning value:

(defun hello ()

 "hello world"

)

Slide 14: List Manipulation

Variable manipulation first:

(setf x 1)

(setf cake `pants)

(setf $#!@$ '&&&&&)

Different ways to define a list:

(setf mylist `(1 2 3))

(setq mylist `(1 2 3))

(set 'mylist `(1 2 3))

(set 'mylist `(1 2 3))

(set 'mylist (quote (1 2 3)))

(set (quote mylist) (quote (1 2 3)))

Car & cdr:

(setf mylist `(5 pants orange))

(car mylist)

(cdr mylist)

How would you get pants?

Can cdr forever:

(cdr (cdr mylist))

(cdr (cdr (cdr mylist)))

But can’t (car (car mylist)) – for that need:

(setf mylist `(((5) pant) orange))

Now can (car (car (car mylist)))

Cons:

(setf laundry `(pants shirt))

Order matters:

(cons ‘hat laundry) – list with hat at front

(cons laundry ‘hat) – cell holding laundry list in left half and hat in right half

This means that

(cons 1 (cons 2 (cons 3 nil)))

and

`(1 2 3)

are equivalent

Slide 16: List Manipulation Continued

Illustrate difference between quote and list

(list 1 2 (* 5 5))

Vs

(quote (1 2 (* 5 5))) and

`(1 2 (* 5 5))

(listp 5)

(listp ‘(1 2 3))

Push and pop behave as anticipated:

(setf mylist `(5 pants orange))

(push `green mylist)

mylist

(pop mylist)

Mylist

Append concatenates lists:

(append `(a b c) `(1 2 3))

Contrast with cons:

(cons `(a b c) `(1 2 3))

Remove and member also behave as expected, except:

returns tail starting with element if found:

lists not modified in place

(setf mylist `(shoes pants shirt))

(member `pants mylist)

(member `pants (remove `pants mylist))

No surprises with length

(length mylist)

Eval: the big one – evaluates a string as though it were code

It’s whats being run whenever we hit return

-think of quote as the anti- eval

(eval `(* 3 4))

(setf x (* 3 4)

(setf x `(* 3 4))

(eval x)

Slide 17: Arithmetic

(setf x 5)

(incf x)

(decf x)

Slide 21: Property List

(setf (get 'x 'y) 4)

(get 'x 'y)

Slide 24: let

(let ((a 5))

(+ a 1))

Slide 24: Conditionals

(if t 10 20)

(if nil 10 20)

(if nil 10)

Slide 27: Functions

(defun bringtowel (laundrylist)

 (append laundrylist '(towel)))

(setf func1 (lambda(x) (+ x 3)))

(setf func2 (lambda(x) (* x 10)))

(defun call (x y) (funcall x y))

(call func1 3)

(call func2 10)

Apply vs funcall:

(funcall #'+ 3 4)
(apply #'+ 3 4 '(3 4))

Slide 28: Mapping functions

(mapcar func1 '(1 2 3))

 Slide 31: Equal

;Code source: http://stackoverflow.com/questions/4427321/setting-up-a-equal-

function-in-common-lisp-using-only-eq

(defun list-equality (list1 list2)

 (if (and (not (null list1))

 (not (null list2)))

 (let ((a (car list1)) (b (car list2)))

 (cond ((and (listp a) (listp b))

 (and (list-equality a b)

 (list-equality (cdr list1) (cdr list2))))

 (t

 (and (eq a b)

 (list-equality (cdr list1) (cdr list2))))))

 (= (length list1) (length list2))))

http://stackoverflow.com/questions/4427321/setting-up-a-equal-function-in-common-lisp-using-only-eq
http://stackoverflow.com/questions/4427321/setting-up-a-equal-function-in-common-lisp-using-only-eq

