To Do

Computer Graphics (Fall 2008)
COMS 4160, Lecture 7: Curves 2
http://www.cs.columbia.edu/~cs4160

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves
- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Idea of Blossoms/Polar Forms

- (Optional) Labeling trick for control points and intermediate deCasteljau points that makes thing intuitive
- E.g. quadratic Bezier curve F(u)
- Define auxiliary function $\mathrm{f}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$ [number of args = degree]
- Points on curve simply have $u_{1}=u_{2}$ so that $F(u)=f(u, u)$
- And we can label control points and deCasteljau points not on curve with appropriate values of $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$
$\mathrm{f}(0,1)=\mathrm{f}(1,0)$

Idea of Blossoms/Polar Forms

Geometric interpretation: Quadratic

Polar Forms: Cubic Bezier Curve

Geometric Interpretation: Cubic

Why Polar Forms?

- Simple mnemonic: which points to interpolate and how in deCasteljau algorithm
- Easy to see how to subdivide Bezier curve (next) which is useful for drawing recursively
- Generalizes to arbitrary spline curves (just label control points correctly instead of 000111 for Bezier)
- Easy for many analyses (beyond scope of course)

Subdividing Bezier Curves

Drawing: Subdivide into halves ($u=1 / 2$) Demo:

- Recursively draw each piece
- At some tolerance, draw control polygon
- Trivial for Bezier curves (from deCasteljau algorithm): hence widely used for drawing
000001011111
000 00u Ouu uuu
uuu uul ull 11

Why specific labels/ control points on left/right?
" How do they follow from deCasteljau?

Geometrically

Subdivision in deCasteljau diagram

Summary for HW 2

- Bezier2 (Bezier discussed last time)
- Given arbitrary degree Bezier curve, recursively subdivide for some levels, then draw control polygon
- Generate deCasteljau diagram; recursively call a routine with left edge and right edge of this diagram
- You are given some code structure; you essentially just need to compute appropriate control points for left, right

DeCasteljau: Recursive Subdivision

Input: Control points C_{i} with $0 \leq i \leq n$ where n is the degree.
Output: L_{i}, R_{i} for left and right control points in recursion.
1 for (level $=n$; level ≥ 0; level --) $\{$
2 if (level $==n)\{/ /$ Initial control points
$\forall i: 0 \leq i \leq n: p_{i}^{\text {level }}=C_{i} ;$ continue ; $\}$
for ($i=0 ; i \leq$ level $; i++$)
$p_{i}^{\text {level }}=\frac{1}{2} *\left(p_{i}^{\text {level }+1}+p_{i+1}^{\text {level }+1}\right) ;$
6 \}
$7 \forall i: 0 \leq i \leq n: L_{i}=p_{0}^{i} ; \quad R_{i}=p_{i}^{i} ;$

- DeCasteljau (from last lecture) for midpoint
- Followed by recursive calls using left, right parts

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves
- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Bezier: Disadvantages

- Single piece, no local control (move a control point, whole curve changes)
- Complex shapes: can be very high degree, difficult
- In practice, combine many Bezier curve segments
- But only position continuous at join since Bezier curves interpolate end-points (which match at segment boundaries)
- Unpleasant derivative (slope) discontinuities at end-points
- Can you see why this is an issue?

B-Splines

- Cubic B-splines have C^{2} continuity, local control
- 4 segments / control point, 4 control points/segment
- Knots where two segments join: Knotvector
- Knotvector uniform/non-uniform (we only consider uniform cubic B-splines, not general NURBS)

Demo:

Polar Forms: Cubic Bspline Curve

- Labeling little different from in Bezier curve
- No interpolation of end-points like in Bezier
" Advantage of polar forms: easy to generalize

Uniform knot vector: -2, $-1,0,1,2$, 3 Labels correspond to this

deCasteljau: Cubic B-Splines

- Easy to generalize using polar-form labels
- Impossible remember

without

```
-2 -1 0
\(-101\)
```



```
\(-10 \mathrm{u}\)
```


Explicit Formula (derive as exercise)

Summary of HW 2

- BSpline Demo
- Arbitrary number of control points / segments
- Do nothing till 4 control points (see demo)
- Number of segments = \# cpts - 3
- Segment A will have control pts A,A+1,A+2,A+3
- Evaluate Bspline for each segment using 4 control points (at some number of locations, connect lines)
- Use either deCasteljau algorithm (like Bezier) or explicit form [matrix formula on previous slide]
- Questions?

