Computer Graphics (Fall 2008)
COMS 4160, Lecture 6: Curves 1 http://www.cs.columbia.edu/~cs4160

Course Outline

Motivation

- How do we model complex shapes?
" In this course, only 2D curves, but can be used to create interesting 3D shapes by surface of revolution, lofting etc
- Techniques known as spline curves
- This unit is about mathematics required to draw these spline curves, as in HW 2
" History: From using computer modeling to define car bodies in auto-manufacturing. Pioneers are Pierre Bezier (Renault), de Casteljau (Citroen)

Outline of Unit

- Bezier curves
- deCasteljau algorithm, explicit form, matrix form
- Polar form labeling (next time)
- B-spline curves (next time)
- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Bezier Curve (with HW2 demo)

- Motivation: Draw a smooth intuitive curve (or surface) given a few key user-specified control points

Control points (all that user specifies, edits)

Bezier Curve: (Desirable) properties

- Interpolates, is tangent to end points
- Curve within convex hull of control polygon

Control points (all that user specifies, edits)

deCasteljau: Linear Bezier Curve

- Just a simple linear combination or interpolation (easy to code up, very numerically stable)

$\mathrm{F}(\mathrm{u})=(1-\mathrm{u}) \mathrm{P} 0+\mathrm{u} \mathrm{Pl}$

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
" Properties: Advantages and Disadvantages
deCasteljau: Quadratic Bezier Curve

Quadratic
Degree 2, Order 3
$\mathrm{F}(0)=\mathrm{P} 0, \mathrm{~F}(1)=\mathrm{P} 2$
$\mathrm{F}(\mathrm{u})=$?

$F(u)=(1-u)^{2} P 0+2 u(1-u) P 1+u^{2} P 2$

Geometric Interpretation: Cubic

deCasteljau: Cubic Bezier Curve

Cubic
Degree 3, Order 4 $\mathrm{F}(0)=\mathrm{P} 0, \mathrm{~F}(1)=\mathrm{P} 3$

$\mathrm{F}(\mathrm{u})=(1-\mathrm{u})^{3} \mathrm{P} 0+3 \mathrm{u}(1-\mathrm{u})^{2} \mathrm{P} 1$ $+3 \mathrm{u}^{2}(1-\mathrm{u}) \mathrm{P} 2+\mathrm{u}^{3} \mathrm{P} 3$

Summary: deCasteljau Algorithm

Quadratic

Cubic

Degree 1, Order 2
$\mathrm{F}(0)=\mathrm{P} 0, \mathrm{~F}(1)=\mathrm{P} 1$
P0
$F(u)=(1-u) P 0+u P l$

Degree 2, Order 3
$\mathrm{F}(0)=\mathrm{P} 0, \mathrm{~F}(1)=\mathrm{P} 2$

$F(u)=(1-u)^{2} P 0+2 u(1-u) P 1+u^{2} P 2$

Degree 3, Order 4 $\mathrm{F}(0)=\mathrm{P} 0, \mathrm{~F}(1)=\mathrm{P} 3$

DeCasteljau Implementation

Input: Control points C_{i} with $0 \leq i \leq n$ where n is the degree
Output: $f(u)$ where u is the parameter for evaluation
1 for $($ level $=n$; level ≥ 0; level --$)$ \{
2 if (level $==n$) $\{/ /$ Initial control points
$\forall i: 0 \leq i \leq n: p_{i}^{\text {level }}=C_{i} ;$ continue ; $\}$
for ($i=0 ; i \leq$ level $; i++$)
$p_{i}^{\text {level }}=(1-u) * p_{i}^{\text {level }+1}+u * p_{i+1}^{\text {level }+1}$;
6 \}
$7 f(u)=p_{0}^{0}$

- Can be optimized to do without auxiliary storage

Summary of HW2 Implementation

Bezier (Bezier2 and Bspline discussed next time)
" Arbitrary degree curve (number of control points)

- Break curve into detail segments. Line segments for these
- Evaluate curve at locations $0,1 /$ detail, 2/detail, ... , 1
- Evaluation done using deCasteljau
- Key implementation: deCasteljau for arbitrary degree
" Is anyone confused? About handling arbitrary degree?
- Can also use alternative formula if you want
- Explicit Bernstein-Bezier polynomial form (next)
" Questions?

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
" Properties: Advantages and Disadvantages

Recap formulae

[^0]
Recap formulae

Summary of Explicit Form

$$
\begin{array}{ll}
\text { Linear: } & F(u)=P_{0}(1-u)+P_{1} u \\
\text { Quadratic: } & F(u)=P_{0}(1-u)^{2}+P_{1}[2 u(1-u)]+P_{2} u^{2} \\
\text { Cubic: } & F(u)=P_{0}(1-u)^{3}+P_{1}\left[3 u(1-u)^{2}\right]+P_{2}\left[3 u^{2}(1-u)\right]+P_{3} u^{3} \\
\text { Degree n: } & F(u)=\sum_{k} P_{k} B_{k}^{n}(u) \quad B_{k}^{n}(u) \text { are Bernstein-Bezier polynomials } \\
& B_{k}^{n}(u)=\frac{n!}{k!(n-k)!}(1-u)^{n-k} u^{k}
\end{array}
$$

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- $4 x 4$ matrix for cubics
" Properties: Advantages and Disadvantages

Cubic 4x4 Matrix (derive)

$$
F(u)=P_{0}(1-u)^{3}+P_{1}\left[3 u(1-u)^{2}\right]+P_{2}\left[3 u^{2}(1-u)\right]+P_{3} u^{3}
$$

$$
=\left(\begin{array}{llll}
u^{3} & u^{2} & u & 1
\end{array}\right)\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right)
$$

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
" Properties: Advantages and Disadvantages

Properties (brief discussion)

- Demo:
- Interpolation: End-points, but approximates others
- Single piece, moving one point affects whole curve (no local control as in B-splines later)
- Invariant to translations, rotations, scales etc. That is, translating all control points translates entire curve
- Easily subdivided into parts for drawing (next lecture): Hence, Bezier curves easiest for drawing

[^0]: - Linear combination of basis functions

 Linear: $\quad F(u)=P_{0}(1-u)+P_{1} u$
 Quadratic: $F(u)=P_{0}(1-u)^{2}+P_{1}[2 u(1-u)]+P_{2} u^{2}$
 Cubic: $\quad F(u)=P_{0}(1-u)^{3}+P_{1}\left[3 u(1-u)^{2}\right]+P_{2}\left[3 u^{2}(1-u)\right]+P_{3} u^{3}$

 Degree n: $F(u)=\sum_{k} P_{k} B_{k}^{n}(u) \quad B_{k}^{n}(u)$ are Bernstein-Bezier polynomials

 - Explicit form for basis functions? Guess it?

