## To Do

" Questions/concerns about assignment 1?

- Remember it is due Thu. Ask me or TA if any problems.


## Motivation

- We have seen transforms (between coord systems)
- But all that is in 3D
- We still need to make a 2D picture
- Project 3D to 2D. How do we do this?
- This lecture is about viewing transformations

Demo (Projection Tutorial)

- Nate Robbins OpenGL tutors
- 
- Download others

fowy aspect zNear zFar
gluperspective $60.0,1.00,1.0$, 10.0 f gitlookAr $0.00, .000,200$, e-eye
0.00 .0 .00 .0 .00 , <-center
$0.00,1.00,0.00 \mathrm{f}$; <-up
Click on the arguments and move the mouse to modify values.


## What we've seen so far

- Transforms (translation, rotation, scale) as $4 \times 4$ homogeneous matrices



## Projections

- To lower dimensional space (here 3D -> 2D)
- Preserve straight lines
- Trivial example: Drop one coordinate (Orthographic)


## Example

- Simply project onto xy plane, drop z coordinate

- First center cuboid by translating
- Then scale into unit cube





## Transformation Matrix

$$
M=\left(\begin{array}{cccc} 
& \text { Scale } & & \begin{array}{c}
2 \\
\frac{2}{r-l}
\end{array} \\
0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & -\frac{l+r}{2} \\
0 & 1 & 0 & -\frac{t+b}{2} \\
0 & 0 & 1 & -\frac{f+n}{2} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

## Caveats

- Looking down -z , f and n are negative ( $\mathrm{n}>\mathrm{f}$ )
- OpenGL convention: positive n, f, negate internally



## Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z


## Final Result

$$
M=\left(\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { glOrtho }=\left(\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

## Perspective Projection

- Most common computer graphics, art, visual system
- Further objects are smaller (size, inverse distance)
- Parallel lines not parallel; converge to single point


Center of projection
(camera/eye location)
Looks like we've got some nice similar triangles here?

$$
\frac{x}{z}=\frac{x^{\prime}}{d} \Rightarrow x^{\prime}=\frac{d * x}{z} \quad \frac{y}{z}=\frac{y^{\prime}}{d} \Rightarrow y^{\prime}=\frac{d^{*} y}{z}
$$

## In Matrices

- Note negation of z coord (focal plane -d)
- (Only) last row affected (no longer 000 1)
- w coord will no longer $=1$. Must divide at end

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=? \quad\left(\begin{array}{c}
x \\
y \\
z \\
-\frac{1}{d}
\end{array}\right)=\left(\begin{array}{c}
-\frac{d^{*} x}{z} \\
-\frac{d^{*} y}{z} \\
-d \\
1
\end{array}\right)
$$

## Remember projection tutorial



## Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z



## gluPerspective

- gluPerspective(fovy, aspect, zNear $>0$, zFar $>0$ )
- Fovy, aspect control fov in $x$, y directions
- zNear, zFar control viewing frustum



## Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z


## In Matrices

- Simplest form:

$$
P=\left(\begin{array}{cccc}
\frac{1}{\text { aspect }} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{array}\right)
$$

- Aspect ratio taken into account
- Homogeneous, simpler to multiply through by d
- Must map z values based on near, far planes (not yet)


## Z mapping derivation

$$
\left(\begin{array}{cc}
A & B \\
-1 & 0
\end{array}\right)\binom{z}{1}=? \quad\binom{A z+B}{-z}=-A-\frac{B}{z}
$$

- Simultaneous equations?

$$
\begin{array}{rlrl}
-A+\frac{B}{n} & =-1 & A & =-\frac{f+n}{f-n} \\
-A+\frac{B}{f} & =+1 & B & =-\frac{2 f n}{f-n}
\end{array}
$$

## Mapping of $\mathbf{Z}$ is nonlinear

$$
\binom{A z+B}{-z}=-A-\frac{B}{z}
$$

- Many mappings proposed: all have nonlinearities
- Advantage: handles range of depths ( $10 \mathrm{~cm}-100 \mathrm{~m}$ )
- Disadvantage: depth resolution not uniform
- More close to near plane, less further away
- Common mistake: set near $=0$, far $=$ infty. Don't do this. Can't set near $=0$; lose depth resolution.
- We discuss this more in review session


