Computer Graphics (Fall 2008)

COMS 4160, Lecture 5: Viewing http://www.cs.columbia.edu/~cs4160

To Do

- Questions/concerns about assignment 1?
- Remember it is due Thu. Ask me or TA if any problems.

Motivation

- We have seen transforms (between coord systems)
- But all that is in 3D
- We still need to make a 2D picture
- Project 3D to 2D. How do we do this?
- This lecture is about viewing transformations

Demo (Projection Tutorial)

- Nate Robbins OpenGL tutors
- Projection.exe
- Download others

What we've seen so far

- Transforms (translation, rotation, scale) as 4x4 homogeneous matrices
- Last row always 0 0 0 1. Last w component always 1
- For viewing (perspective), we will use that last row and w component no longer 1 (must divide by it)

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Not well covered in textbook chapter 7. We follow section 3.5 of real-time rendering most closely. Handouts on this will be given out.

Projections

- To lower dimensional space (here 3D -> 2D)
- Preserve straight lines
- Trivial example: Drop one coordinate (Orthographic)

Orthographic Projection

- Characteristic: Parallel lines remain parallel
- Useful for technical drawings etc.

In general

- We have a cuboid that we want to map to the normalized or square cube from [-1, +1] in all axes
- We have parameters of cuboid (l,r ; t,b; n,f)

Transformation Matrix							
$\left(\frac{2}{r-l}\right)$	Scale 0 2	0	0	1	slat 0	0	(centering) $-\frac{l+r}{2}$ $t+b$
$M = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$	$\frac{\overline{t-b}}{0}$	0 $\frac{2}{f-n}$ 0	0 0 1	0	1 0 0	0 1 0	$-\frac{1}{2}$ $-\frac{f+n}{2}$

Caveats

- Looking down –z, f and n are negative (n > f)
- OpenGL convention: positive n, f, negate internally

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Perspective Projection

- Most common computer graphics, art, visual system
- Further objects are smaller (size, inverse distance)
- Parallel lines not parallel; converge to single point

In Matrices

- Note negation of z coord (focal plane –d)
- (Only) last row affected (no longer 0 0 0 1)
- w coord will no longer = 1. Must divide at end

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{d} & 0 \end{pmatrix}$$

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

- gluPerspective(fovy, aspect, zNear > 0, zFar > 0)
- Fovy, aspect control fov in x, y directions
- zNear, zFar control viewing frustum

• Must map z values based on near, far planes (not yet)

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Mapping of Z is nonlinear

$$\begin{pmatrix} Az+B\\ -z \end{pmatrix} = -A - \frac{B}{z}$$

- Many mappings proposed: all have nonlinearities
- Advantage: handles range of depths (10cm 100m)
- Disadvantage: depth resolution not uniform
- More close to near plane, less further away
- Common mistake: set near = 0, far = infty. Don't do this. Can't set near = 0; lose depth resolution.
- We discuss this more in review session

