To Do

Computer Graphics (Fall 2008)
COMS 4160, Lecture 4: Transformations 2
http://www.cs.columbia.edu/~cs4160

- Start doing assignment 1
" Time is short, but needs only little code [Due Thu Sep 25, 11:59pm]
- Ask questions or clear misunderstandings by next lecture
- Specifics of HW 1
- Last lecture covered basic material on transformations in 2D. You likely need this lecture though to understand full 3D transformations
- Last lecture had some complicated stuff on 3D rotations. You only need final formula (actually not even that, setrot function available)
" gluLookAt derivation this lecture should help clarifying some ideas
- Read bulletin board and webpage!!

Outline

- Translation: Homogeneous Coordinates
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Exposition is slightly different than in the textbook

Homogeneous Coordinates

- Add a fourth homogeneous coordinate ($\mathrm{w}=1$)
- 4×4 matrices very common in graphics, hardware
- Last row always 0001 (until next lecture)

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+5 \\
y \\
z \\
1
\end{array}\right)
$$

Representation of Points (4-Vectors)

Homogeneous coordinates

- Divide by $4^{\text {th }}$ coord (w) to get (inhomogeneous) point
- Multiplication by w >0, no effect

$$
P=\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
x / w \\
y / w \\
z / w \\
1
\end{array}\right)
$$

- Assume $w \geq 0$. For $w>0$, normal finite point. For $w=0$, point at infinity (used for vectors to stop translation)

Advantages of Homogeneous Coords

General Translation Matrix

- Unified framework for translation, viewing, rot...
- Can concatenate any set of transforms to 4×4 matrix
- No division (as for perspective viewing) till end
- Simpler formulas, no special cases
- Standard in graphics software, hardware

Combining Translations, Rotations

- Order matters!! TR is not the same as RT (demo)
- General form for rigid body transforms
- We show rotation first, then translation (commonly used to position objects) on next slide. Slide after that works it out the other way

$$
\begin{aligned}
T & =\left(\begin{array}{cccc}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
I_{3} & T \\
0 & 1
\end{array}\right) \\
P^{\prime}=T P & =\left(\begin{array}{llll}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+T_{x} \\
y+T_{y} \\
z+T_{z} \\
1
\end{array}\right)=P+T
\end{aligned}
$$

Combining Translations, Rotations
" Order matters!! TR is not the same as RT (demo)
" General form for rigid body transforms
" We show rotation first, then translation (commonly
used to position objects) on next slide. Slide after that works it out the other way

Combining Translations, Rotations

Outline

$P^{\prime}=(R T) P=M P=R(P+T)=R P+R T$

$$
M=\left(\begin{array}{cccc}
R_{11} & R_{12} & R_{13} & 0 \\
R_{21} & R_{22} & R_{23} & 0 \\
R_{31} & R_{32} & R_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
R_{33} & R_{33} T_{31} \\
0_{133} & 1
\end{array}\right)
$$

- Translation: Homogeneous Coordinates
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Exposition is slightly different than in the textbook

Normals

- Important for many tasks in graphics like lighting
" Do not transform like points e.g. shear
- Algebra tricks to derive correct transform

Outline

- Translation: Homogeneous Coordinates
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Section 6.5 of textbook

Coordinate Frames

- All of discussion in terms of operating on points
- But can also change coordinate system
- Example, motion means either point moves backward, or coordinate system moves forward

Coordinate Frames: In general

- Can differ both origin and orientation (e.g. 2 people)
- One good example: World, camera coord frames (H1)

Coordinate Frames: Rotations

Geometric Interpretation 3D Rotations

Axis-Angle formula (summary)

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$
R_{u v w}=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right) \quad u=x_{u} X+y_{u} Y+z_{u} Z
$$

$$
\begin{aligned}
&(b \backslash a)_{R O T}=\left(I_{3 \times 3} \cos \theta-a a^{T} \cos \theta\right) b+\left(A^{*} \sin \theta\right) b \\
&(b \rightarrow a)_{R O T}=\left(a a^{T}\right) b \\
& R(a, \theta)=I_{3 \times 3} \cos \theta+a a^{T}(1-\cos \theta)+A^{*} \sin \theta \\
& R(a, \theta)=\cos \theta\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+(1-\cos \theta)\left(\begin{array}{lll}
x^{2} & x y & x z \\
x y & y^{2} & y z \\
x z & y z & z^{2}
\end{array}\right)+\sin \theta\left(\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right)
\end{aligned}
$$

Outline

Case Study: Derive gluLookAt

Defines camera, fundamental to how we view images
" gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

- Camera is at eye, looking at center, with the up direction being up
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Not fully covered in textbooks. However, look at sections 6.5 and 7.2.1
We've already covered the key ideas, so we go over it quickly showing how things fit together

Steps

" gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

- Camera is at eye, looking at center, with the up direction being up

Constructing a coordinate frame?

We want to associate \mathbf{w} with \mathbf{a}, and \mathbf{v} with \mathbf{b}

- But a and b are neither orthogonal nor unit norm
- And we also need to find u

$$
\begin{aligned}
w & =\frac{a}{\|a\|} \\
u & =\frac{b \times w}{\|b \times w\|} \\
v & =w \times u
\end{aligned}
$$

Constructing a coordinate frame

$$
w=\frac{a}{\|a\|} \quad u=\frac{b \times w}{\|b \times w\|} \quad v=w \times u
$$

- We want to position camera at origin, looking down - Z dirn
- Hence, vector a is given by eye - center
- The vector \mathbf{b} is simply the up vector Up vector

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame

Steps

" gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Translation

" gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

Combining Translations, Rotations

$$
P^{\prime}=(R T) P=M P=R(P+T)=R P+R T
$$

$$
M=\left(\begin{array}{cccc}
R_{11} & R_{12} & R_{13} & 0 \\
R_{21} & R_{22} & R_{23} & 0 \\
R_{31} & R_{32} & R_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
R_{33} & R_{33} T_{31} \\
0 & 1
\end{array}\right)
$$

gluLookAt final form

$$
\begin{aligned}
& \left(\begin{array}{cccc}
x_{u} & y_{u} & z_{u} & 0 \\
x_{v} & y_{v} & z_{v} & 0 \\
x_{w} & y_{w} & z_{w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{cccc}
x_{u} & y_{u} & z_{u} & -x_{u} e_{x}-y_{u} e_{y}-z_{u} e_{z} \\
x_{v} & y_{v} & z_{v} & -x_{x} e_{x}-y_{v} e_{y}-z_{v} e_{z} \\
x_{w} & y_{w} & z_{w} & -x_{w} e_{x}-y_{w} e_{y}-z_{w} e_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

