To Do

Computer Graphics (Fall 2008)
COMS 4160, Lecture 3: Transformations 1
http://www.cs.columbia.edu/~cs4160

- Start (thinking about) assignment 1
" Much of information you need is in this lecture (slides)
" Ask TA NOW if compilation problems, visual C++ etc.
" Not that much coding [solution is approx. 20 lines, but you may need more to implement basic matrix/vector math], but some thinking and debugging likely involved
- Specifics of HW 1
" Axis-angle rotation and gluLookAt most useful (essential?). These are not covered in text (look at slides).
- You probably only need final results, but try understanding derivations.
- Problems in text help understanding material. Usually, we have review sessions per unit, but this one before midterm

Motivation

- Many different coordinate systems in graphics
- World, model, body, arms, ...
- To relate them, we must transform between them
- Also, for modeling objects. I have a teapot, but
" Want to place it at correct location in the world
- Want to view it from different angles (HW 1)
- Want to scale it to make it bigger or smaller

Motivation
- Many different coordinate systems in graphics
" World, model, body, arms, ...
- To relate them, we must transform between them
- Also, for modeling objects. I have a teapot, but
" Want to place it at correct location in the world
" Want to view it from different angles (HW 1)
" Want to scale it to make it bigger or smaller

Course Outline

- 3D Graphics Pipeline

Modeling (Creating 3D Geometry)
Rendering (Creating, shading images from geometry, lighting, materials)

Unit 1: Transformations
Resizing and placing objects in the
world. Creating perspective images.
Weeks 1 and 2
Ass 1 due Sep 25 ()

Motivation

- Many different coordinate systems in graphics
- World, model, body, arms, ...
- To relate them, we must transform between them
- Also, for modeling objects. I have a teapot, but
" Want to place it at correct location in the world
- Want to view it from different angles (HW 1)
- Want to scale it to make it bigger or smaller
- This unit is about the math for doing all these things
- Represent transformations using matrices and matrix-vector multiplications.
" Demo: HW 1, applet

General Idea

- Object in model coordinates
- Transform into world coordinates
- Represent points on object as vectors
- Multiply by matrices
- Demos with applet
- Chapter 6 in text. We cover most of it essentially as in the
book. Worthwhile (but not essential) to read whole chapter

Outline

Composing Transforms

- Often want to combine transforms
" E.g. first scale by 2, then rotate by 45 degrees
- Advantage of matrix formulation: All still a matrix
- Not commutative!! Order matters

E.g. Composing rotations, scales

$$
\begin{aligned}
& x_{3}=R x_{2} \quad x_{2}=S x_{1} \\
& x_{3}=R\left(S x_{1}\right)=(R S) x_{1} \\
& x_{3} \neq S R x_{1}
\end{aligned}
$$

Outline

- 2D transformations: rotation, scale, shear
- Composing transforms
- 3D rotations
- Translation: Homogeneous Coordinates
- Transforming Normals

Rotations in 3D

- Rotations about coordinate axes simple

$$
\begin{array}{ll}
R_{z}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \\
R_{y}=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)
\end{array}
$$

- Always linear, orthogonal $\quad R^{T} R=I$
" Rows/cols orthonormal $\quad \mathrm{R}(\mathrm{X}+\mathrm{Y})=\mathrm{R}(\mathrm{X})+\mathrm{R}(\mathrm{Y})$

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$
\begin{aligned}
R_{u v w} & =\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right) \quad u=x_{u} X+y_{u} Y+z_{u} Z \\
R p & =\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right)\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right)=?\left(\begin{array}{l}
u \bullet p \\
v \bullet p \\
w \bullet p
\end{array}\right)
\end{aligned}
$$

Geometric Interpretation 3D Rotations

$$
R p=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right)\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right)=\left(\begin{array}{c}
u \bullet p \\
v \bullet p \\
w \bullet p
\end{array}\right)
$$

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors
- Effectively, projections of point into new coord frame
- New coord frame uvw taken to cartesian components xyz
- Inverse or transpose takes xyz cartesian to uvw

Non-Commutativity

- Not Commutative (unlike in 2D)!!
- Rotate by x, then y is not same as y then x
- Order of applying rotations does matter
- Follows from matrix multiplication not commutative
- R1 * R2 is not the same as R2 * R1
- Demo: HW1, order of right or up will matter

Arbitrary rotation formula

- Rotate by an angle θ about arbitrary axis a
" Not in book. Homework 1: must rotate eye, up direction
- Somewhat mathematical derivation (not covered here except relatively vaguely), but useful formula
- Problem setup: Rotate vector by θ about a
- Helpful to relate \mathbf{b} to \mathbf{X}, a to Z , verify does right thing
- For HW1, you probably just need final formula

Axis-Angle formula

- Step 1: b has components parallel to a, perpendicular
- Parallel component unchanged (rotating about an axis
leaves that axis unchanged after rotation, e.g. rot about z)
- Step 2: Define \mathbf{c} orthogonal to both \mathbf{a} and \mathbf{b}
- Analogous to defining Y axis
- Use cross products and matrix formula for that
- Step 3: With respect to the perpendicular comp of b
- $\operatorname{Cos} \theta$ of it remains unchanged
- $\operatorname{Sin} \theta$ of it projects onto vector \mathbf{c}
- Verify this is correct for rotating X about Z
- Verify this is correct for θ as 0,90 degrees

Axis-Angle: Putting it together
 Axis-Angle: Putting it together

$$
\begin{aligned}
(b \backslash a)_{R O T} & =\left(I_{3 \times 3} \cos \theta-a a^{T} \cos \theta\right) b+\left(A^{*} \sin \theta\right) b \\
(b \rightarrow a)_{R O T} & =\left(a a^{T}\right) b \\
R(a, \theta)= & I_{3 \times 3} \cos \theta+a a^{T}(1-\cos \theta)+A^{*} \sin \theta \\
& \overbrace{\text { Unchanged }} \quad \begin{array}{cc}
\text { Component } & \text { Perpendicular } \\
\text { (cosine) } & \text { along a }
\end{array}
\end{aligned}
$$ (hence unchanged)

Axis-Angle: Putting it together	
$(b \backslash a)_{R O T}$	$=\left(I_{3 \times 3} \cos \theta-a a^{T} \cos \theta\right) b+\left(A^{*} \sin \theta\right) b$
$(b \rightarrow a)_{R O T}$	$=\left(a a^{T}\right) b$
$R(a, \theta)$	$=I_{3 \times 3} \cos \theta+a a^{T}(1-\cos \theta)+A^{*} \sin \theta$
$R(a, \theta)=\cos \theta\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+(1-\cos \theta)\left(\begin{array}{ccc}x^{2} & x y & x z \\ x y & y^{2} & y z \\ x z & y z & z^{2}\end{array}\right)+\sin \theta\left(\begin{array}{ccc}0 & -z & y \\ z & 0 & -x \\ -y & x & 0\end{array}\right)$	

