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Computer Graphics (Fall 2008)Computer Graphics (Fall 2008)

COMS 4160, Lecture 3: Transformations 1
http://www.cs.columbia.edu/~cs4160

To DoTo Do

Start (thinking about) assignment 1
Much of information you need is in this lecture (slides)
Ask TA NOW if compilation problems, visual C++ etc. 
Not that much coding [solution is approx. 20 lines, but you may need 
more to implement basic matrix/vector math], but some thinking and 
debugging likely involved

Specifics of HW 1
Axis-angle rotation  and gluLookAt most useful (essential?).  These are 
not covered in text (look at slides).
You probably only need final results, but try understanding derivations.  

Problems in text help understanding material.  Usually, we 
have review sessions per unit, but this one before midterm
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Unit 1: Transformations
Resizing and placing objects in the
world.  Creating perspective images.
Weeks 1 and 2 
Ass 1 due Sep 25 (Demo)  

MotivationMotivation
Many different coordinate systems in graphics

World, model, body, arms, …

To relate them, we must transform between them

Also, for modeling objects.  I have a teapot, but
Want to place it at correct location in the world
Want to view it from different angles (HW 1)
Want to scale it to make it bigger or smaller

MotivationMotivation
Many different coordinate systems in graphics

World, model, body, arms, …

To relate them, we must transform between them

Also, for modeling objects.  I have a teapot, but
Want to place it at correct location in the world
Want to view it from different angles (HW 1)
Want to scale it to make it bigger or smaller

This unit is about the math for doing all these things
Represent transformations using matrices and matrix-vector 
multiplications.  

Demo: HW 1, applet transformation_game.jar
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General IdeaGeneral Idea

Object in model coordinates

Transform into world coordinates

Represent points on object as vectors

Multiply by matrices

Demos with applet

Chapter 6 in text.  We cover most of it essentially as in the 
book.  Worthwhile (but not essential) to read whole chapter

OutlineOutline

2D transformations: rotation, scale, shear

Composing transforms

3D rotations

Translation: Homogeneous Coordinates (next time)

Transforming Normals (next time)
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RotationsRotations

2D simple, 3D complicated.  [Derivation? Examples?]

2D?

Linear

Commutative
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R(X+Y)=R(X)+R(Y)
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2D transformations: rotation, scale, shear

Composing transforms

3D rotations

Translation: Homogeneous Coordinates

Transforming Normals
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Composing TransformsComposing Transforms

Often want to combine transforms

E.g. first scale by 2, then rotate by 45 degrees

Advantage of matrix formulation: All still a matrix

Not commutative!!  Order matters

E.g. Composing rotations, scalesE.g. Composing rotations, scales

3 2 2 1

3 1 1

3 1

( ) ( )
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transformation_game.jar

Inverting Composite TransformsInverting Composite Transforms
Say I want to invert a combination of 3 transforms

Option 1: Find composite matrix, invert

Option 2: Invert each transform and swap order

Obvious from properties of matrices
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2D transformations: rotation, scale, shear

Composing transforms

3D rotations

Translation: Homogeneous Coordinates

Transforming Normals

RotationsRotations

Review of 2D case

Orthogonal?, 
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Rotations in 3D Rotations in 3D 

Rotations about coordinate axes simple

Always linear, orthogonal
Rows/cols orthonormal
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Geometric Interpretation 3D RotationsGeometric Interpretation 3D Rotations

Rows of matrix are 3 unit vectors of new coord frame

Can construct rotation matrix from 3 orthonormal vectors

u u u
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Geometric Interpretation 3D RotationsGeometric Interpretation 3D Rotations

Rows of matrix are 3 unit vectors of new coord frame

Can construct rotation matrix from 3 orthonormal vectors

Effectively, projections of point into new coord frame

New coord frame uvw taken to cartesian components xyz

Inverse or transpose takes xyz cartesian to uvw
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NonNon--CommutativityCommutativity

Not Commutative (unlike in 2D)!!

Rotate by x, then y is not same as y then x

Order of applying rotations does matter

Follows from matrix multiplication not commutative
R1 * R2 is not the same as R2 * R1

Demo: HW1, order of right or up will matter
simplestGlut.exe

Arbitrary rotation formulaArbitrary rotation formula

Rotate by an angle θ about arbitrary axis a
Not in book. Homework 1: must rotate eye, up direction
Somewhat mathematical derivation (not covered here 
except relatively vaguely), but useful formula

Problem setup: Rotate vector b by θ about a

Helpful to relate b to X, a to Z, verify does right thing

For HW1, you probably just need final formula

simplestGlut.exe

AxisAxis--Angle formulaAngle formula

Step 1: b has components parallel to a, perpendicular
Parallel component unchanged (rotating about an axis 
leaves that axis unchanged after rotation, e.g. rot about z)

Step 2: Define c orthogonal to both a and b
Analogous to defining Y axis
Use cross products and matrix formula for that

Step 3: With respect to the perpendicular comp of b
Cos θ of it remains unchanged
Sin θ of it projects onto vector c
Verify this is correct for rotating X about Z
Verify this is correct for θ as 0, 90 degrees

AxisAxis--Angle: Putting it togetherAngle: Putting it together

*
3 3( \ ) ( cos cos ) ( sin )T

ROTb a I aa b A bθ θ θ×= − +

( ) ( )T
ROTb a aa b→ =

*
3 3( , ) cos (1 cos ) sinTR a I aa Aθ θ θ θ×= + − +

Unchanged
(cosine)

Component
along a  

(hence unchanged)

Perpendicular
(rotated comp)
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AxisAxis--Angle: Putting it togetherAngle: Putting it together
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(x y z) are cartesian components of a


