Computer Graphics (Fall 2008)

COMS 4160, Lecture 23: Radiosity
http://www.cs.columbia.edu/~cs4160

Advantages and Disadvantages

- Radiosity methods track rate at which energy (radiosity) leaves [diffuse] surfaces
- Determine equilibrium of light energy in a viewindependent way
- Allows for diffuse interreflection, color bleeding, and walkthroughs
- Difficult to handle specular objects, mirrors

General Approach

- Assume diffuse surfaces discretized into a finite set of patches or finite elements
- Radiosity equation is a matrix equation or set of simultaneous linear equations derived by approximations to the rendering equation
- Solve iteratively using numerical methods

Earliest Radiosity pictures

Outline

- Rendering equation review
- Radiosity equation
- Form factors
- Methods to compute form factors

High-level overview only. Best textual reference is probably Sections 16.3.1 and 16.3.2 in FvDFH. This will be handed out. If curious, read the rest of 16.3 and parts of Cohen and Wallace.

Rendering Equation
Surfaces (interreflection)

$$
\omega_{i} \sim x^{\prime}-x
$$

$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$
Reflected Light Emission Reflected BRDF Cosine of (Output Image)
UNKNOWN
KNOWN UNKNOWN KNOWN
Incident angle

Change of Variables

$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}, \cos \theta_{i} d \omega_{i}\right.$
Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

$$
d \omega_{i}=\frac{d A^{\prime} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
$$

Change of Variables

$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$
Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)
$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\text {all } x^{\prime} \text { visble to } x} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}} d A^{\prime}$

$$
\begin{aligned}
d \omega_{i} & =\frac{d A^{\prime} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}} \\
G\left(x, x^{\prime}\right)=G\left(x^{\prime}, x\right) & =\frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
\end{aligned}
$$

Radiosity Equation

$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\text {all surfaces } x^{\prime}} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A^{\prime}$
Drop angular dependence (diffuse Lambertian surfaces)

$$
L_{r}(x)=L_{e}(x)+f(x) \int_{S} L_{r}\left(x^{\prime}\right) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A^{\prime}
$$

Change variables to radiosity (B) and albedo (ρ)

$$
B(x)=E(x)+\rho(x) \int_{S} B\left(x^{\prime}\right) \frac{G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right)}{\pi} d A^{\prime}
$$

Expresses conservation of light energy at all points in space

Same as equation 2.54 in Cohen Wallace handout (read sec 2.6.3)
Ignore factors of π which can be absorbed.

Outline

- Rendering equation review
- Radiosity equation
- Form factors
- Methods to compute form factors

Section 16.3.1,2 (eqs 16.63-65) in FvDFH

Form Factors

$$
\begin{array}{r}
A_{i} F_{i \rightarrow j}=A_{j} F_{j \rightarrow i}=\iint \frac{G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right)}{\pi} d A_{i} d A_{j} \\
G\left(x, x^{\prime}\right)=G\left(x^{\prime}, x\right)=\frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
\end{array}
$$

Outline

- Rendering equation review
- Radiosity equation
- Form factors
- Methods to compute form factors

Discretization and Form Factors

$$
\begin{aligned}
B(x) & =E(x)+\rho(x) \int_{S} B\left(x^{\prime}\right) \frac{G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right)}{\pi} d A^{\prime} \\
B_{i} & =E_{i}+\rho_{i} \sum_{j} B_{j} F_{j \rightarrow i} \frac{A_{j}}{A_{i}}
\end{aligned}
$$

F is the form factor. It is dimensionless and is the fraction of energy leaving the entirety of patch j (multiply by area of j to get total energy) that arrives anywhere in the entirety of patch i (divide by area of i to get energy per unit area or radiosity).

Nusselt's Analog

Analytically project into hemisphere above point. Then project onto hemisphere base

Form factor is ratio
of area on base to
area of entire base
This computes differential point to patch form factor

Why does it work?

Monte Carlo Ray Tracing

- Can be used to find form factors (slow)
- Can be used directly to shoot energy

