Computer Graphics (Fall 2008)
COMS 4160, Lecture 22: Global Illumination
http://www.cs.columbia.edu/~cs4160

Illumination Models

So far considered mainly local illumination

- Light directly from light sources to surface

Global Illumination: multiple bounces

- Already ray tracing: reflections/refractions

Some images courtesy Henrik Wann Jensen

Global Illumination
Caustics: Focusing through specular surface

Major research effort in 80s, 90s till today

Overview of lecture

- Theory for all methods (ray trace, radiosity)
- We derive Rendering Equation [Kajiya 86]
" Major theoretical development in field
- Unifying framework for all global illumination
- Discuss existing approaches as special cases

[^0]
Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
- As a general Integral Equation and Operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

Reflectance Equation (review)

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right)\left(\omega_{i} \bullet n\right)
$$

Reflected Light Emission Incident BRDF Cosine of
(Output Image) Light (from Incident angle

Reflectance Equation (review)

Replace sum with integral
$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{i}\left(x, \omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$
Reflected Light
(Output Image)

Emission Incident
Light (from BRDF

Cosine of Incident angle

Rendering Equation

Surfaces (interreflection)

$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$

Reflected Light (Output Image)	Emission	Reflected Light	BRDF	Cosine of Incident angle
UNKNOWN	KNOWN	UNKNOWN	KNOWN	KNOWN

Incident angle
UNKNOWN
KNOWN UNKNOWN KNOWN
KNOWN

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
- As a general Integral Equation and Operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

The material in this part of the lecture is fairly advanced and not covered in any of the texts. The slides should be fairly complete. This section is fairly short, and I hope some of you will get some insight into solutions for general global illumination

Rendering Equation as Integral Equation

| $\qquad L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega}$ | $L_{r}\left(x^{\prime},-\omega_{i}\right)$ | $f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$ | | |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Reflected Light
 (Output Image) | Emission | Reflected
 Light | BRDF | Cosine of
 Incident angle |
| UNKNOWN | KNOWN | UNKNOWN | KNOWN | KNOWN |

Is a Fredholm Integral Equation of second kind [extensively studied numerically] with canonical form

$$
l(u)=e(u)+\int l(v) K(u, v) d v
$$

Kernel of equation

Linear Operator Equation

$$
l(u)=e(u)+\int l(v) \underbrace{K(u, v) d v}_{\substack{\text { Kernel of equation } \\ \text { Light Transport Operator }}}
$$

$$
L=E+K L
$$

Can be discretized to a simple matrix equation [or system of simultaneous linear equations] (L, E are vectors, K is the light transport matrix)

Solution Techniques

All global illumination methods try to solve (approximations of) the rendering equation

- Too hard for analytic solution: numerical General theory of solving integral equations

Radiosity (next lecture; usually diffuse surfaces)

- General class numerical finite element methods (divide surfaces in scene into a finite set elements or patches)
- Set up linear system (matrix) of simultaneous equations
- Solve iteratively

Ray Tracing and extensions

- General class numerical Monte Carlo methods
- Approximate set of all paths of light in scene

$$
\begin{aligned}
L & =E+K L \\
I L-K L & =E \\
(I-K) L & =E \\
L & =(I-K)^{-1} E
\end{aligned}
$$

Binomial Theorem

$$
\begin{aligned}
& L=\left(I+K+K^{2}+K^{3}+\ldots\right) E \\
& L=E+K E+K^{2} E+K^{3} E+\ldots
\end{aligned}
$$

Ray Tracing
$L=E+K E+K^{2} E+K^{3} E+\ldots$
Emission directly
From light sources
Direct Illumination on surfaces

[^1][Mirrors, Refraction]
(Two bounce indirect)
[Caustics etc]

Ray Tracing

$L=E+K E+K^{2} E+K^{3} E+\ldots$
Emission directly
From light sources
Direct Illumination on surfaces

Global Illumination
(One bounce indirect) [Mirrors, Refraction]
(Two bounce indirect) [Caustics etc]

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
- As a general Integral Equation and Operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

Page 461 of Shirley is reasonably close to this part of lecture, although it uses different notation. See also pages 38 and 39 in handout, which may have a clearer explanation of the ideas.

Rendering Equation

Surfaces (interreflection)

$$
\omega_{i} \sim x^{\prime}-x
$$

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
$$

Reflected Light
(Output Image)

Emission	Reflected Light	BRDF
KNOWN	UNKNOWN	KNOWN

Cosine of
Incident angle
UNKNOWN
KNOWN UNKNOWN KNOWN
KNOWN

Change of Variables

$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}$
Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

$$
d \omega_{i}=\frac{d A^{\prime} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
$$

Change of Variables

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r} \cos \theta_{i} d \omega_{i}\right.
$$

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)
$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\text {all } x^{\prime} \text { visible to } x} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}} d A^{\prime}$

$$
\begin{aligned}
d \omega_{i} & =\frac{d A^{\prime} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}} \\
G\left(x, x^{\prime}\right)=G\left(x^{\prime}, x\right) & =\frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
\end{aligned}
$$

Rendering Equation: Standard Form

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
$$

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)
$L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\text {all } x^{\prime} \text { vistle to } x} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}} d A^{\prime}$
Domain integral awkward. Introduce binary visibility fn V

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\text {all surfaces } x^{\prime}} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) G\left(x, x^{\prime}\right) V\left(x, x^{\prime}\right) d A^{\prime}
$$

Same as equation 2.52 Cohen Wallace. It swaps primed
And unprimed, omits angular args of BRDF, - sign
Same as equation above 19.3 in Shirley, except he has

$$
d \omega_{i}=\frac{d A^{\prime} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
$$

no emission, slightly diff. notation

$$
\begin{aligned}
& \text { he has } \\
& G\left(x, x^{\prime}\right)=G\left(x^{\prime}, x\right)=\frac{\cos \theta_{i} \cos \theta_{o}}{\left|x-x^{\prime}\right|^{2}}
\end{aligned}
$$

Overview

- Theory for all methods (ray trace, radiosity)
- We derive Rendering Equation [Kajiya 86]
- Major theoretical development in field
- Unifying framework for all global illumination
" Discuss existing approaches as special cases

[^0]: Fairly theoretical lecture (but important). Not well covered in any of the textbooks. Closest are 2.6.2 in Cohen and Wallace handout (but uses slightly different notation, argument [swaps x, x' among other things]) and 19.2 in Shirley (different notation, omits emission, but has a reasonably good intuitive discussion that we somewhat follow).

[^1]: Global Illumination
 (One bounce indirect)

