Computer Graphics (Fall 2008)

COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160

Radiance

- Power per unit projected area perpendicular to the ray per unit solid angle in the direction of the ray
- Symbol: $\mathrm{L}(\mathrm{x}, \omega)\left(\mathrm{W} / \mathrm{m}^{2} \mathrm{sr}\right)$
- Flux given by
$d \Phi=L(x, \omega) \cos \theta d \omega d A$

Radiance properties

- Radiance is constant as it propagates along ray
- Derived from conservation of flux
- Fundamental in Light Transport.

$$
d \Phi_{1}=L_{1} d \omega_{1} d A_{1}=L_{2} d \omega_{2} d A_{2}=d \Phi_{2}
$$

$$
d \omega_{1}=d A_{2} / r^{2} \quad d \omega_{2}=d A_{1} / r^{2}
$$

$$
d \omega_{1} d A_{1}=\frac{d A_{1} d A_{2}}{r^{2}}=d \omega_{2} d A_{2}
$$

$$
\therefore L_{1}=L_{2}
$$

Quiz

Does radiance increase under a magnifying glass?

Quiz

Does the brightness that a wall appears to the eye depend on the distance of the viewer to the wall?

C5348B Lecture 4

Radiance properties

- Sensor response proportional to radiance (constant of proportionality is throughput)
- Far away surface: See more, but subtends smaller angle
- Wall equally bright across viewing distances

Consequences

- Radiance associated with rays in a ray tracer
- Other radiometric quants derived from radiance

Irradiance, Radiosity

- Irradiance E is radiant power per unit area
- Integrate incoming radiance over hemisphere
- Projected solid angle ($\cos \theta \mathrm{d} \omega$)
- Uniform illumination: Irradiance $=\pi$ [CW 24,25]
- Units: W/m²

- Radiosity

Figure 2.8: Projection of differential area

- Power per unit area leaving surface (like irradiance)

Building up the BRDF

- Bi-Directional Reflectance Distribution Function [Nicodemus 77]
- Function based on incident, view direction
- Relates incoming light energy to outgoing light energy
- We have already seen special cases: Lambertian, Phong
- In this lecture, we study all this abstractly

The BRDF

Bidirectional Reflectance-Distribution Function

$$
f_{r}\left(\omega_{1} \rightarrow \omega_{r}\right) \equiv \frac{d L_{r}\left(\omega_{i} \rightarrow \omega_{r}\right)}{d E_{i}}\left[\frac{1}{s r}\right]
$$

C53488 Lecture 10

Properties of BRDF's

1. Linear

From Sillion, Arvo, Westin, Greenberg
2. Reciprocity principle $f_{r}\left(\omega_{r} \rightarrow \omega_{i}\right)=f_{r}\left(\omega_{i} \rightarrow \omega_{r}\right)$

BRDF

- Reflected Radiance proportional to Irradiance
- Constant proportionality: BRDF [CW pp 28,29]
- Ratio of outgoing light (radiance) to incoming light (irradiance)
- Bidirectional Reflection Distribution Function
- (4 Vars) units $1 / \mathrm{sr}$

$$
\begin{aligned}
f\left(\omega_{i}, \omega_{r}\right) & =\frac{L_{r}\left(\omega_{r}\right)}{L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i}} \\
L_{r}\left(\omega_{r}\right) & =L_{i}\left(\omega_{i}\right) f\left(\omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
\end{aligned}
$$

Properties of BRDF's

3. Isotropic vs. anisotropic

$$
f_{r}\left(\theta_{i}, \theta_{r}, \varphi_{r}-\varphi_{i}\right)=f_{r}\left(\theta_{r}, \theta_{i}, \varphi_{i}-\varphi_{r}\right)=f_{r}\left(\theta_{i}, \theta_{r},\left|\varphi_{r}-\varphi_{i}\right|\right)
$$

4. Energy conservation

Cs348B Lecture 10

Isotropic vs Anisotropic

- Isotropic: Most materials (you can rotate about normal without changing reflections)
- Anisotropic: brushed metal etc. preferred tangential direction

Isotropic

Anisotropic

Reflection Equation

$$
L_{r}\left(\omega_{r}\right)=L_{i}\left(\omega_{i}\right) f\left(\omega_{i}, \omega_{r}\right)\left(\omega_{i} \bullet n\right)
$$

Reflected Radiance Incident BRDF Cosine of (Output Image) radiance (from light source)

Reflection Equation

Radiometry

- Physical measurement of electromagnetic energy
- We consider light field
- Radiance, Irradiance
- Reflection functions: Bi-Directional Reflectance

Distribution Function or BRDF

- Reflection Equation
- Simple BRDF models

Ideal Diffuse Reflection

Assume light is equally likely to be reflected in any output direction (independent of input direction).

$$
\begin{aligned}
L_{r, d}\left(\omega_{r}\right) & =\int f_{r, d} L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& =f_{r, d} \int L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& =f_{r d} E
\end{aligned}
$$

$M=\int L_{r}\left(\omega_{r}\right) \cos \theta_{r} d \omega_{r}=L_{r} \int \cos \theta_{r} d \omega_{r}=\pi L_{r}$
$\rho_{d}=\frac{M}{E}=\frac{\pi L_{r}}{E}=\frac{\pi f_{r, d} E}{E}=\pi f_{r, d} \Rightarrow f_{r, d}=\frac{\rho_{d}}{\pi}$
Lambert's Cosine Law $M=\rho_{d} E=\rho_{d} E, \cos \theta$,

Phong Model

Reciprocity: $(\hat{\mathbf{E}} \bullet \mathbf{R}(\hat{\mathbf{L}}))^{s}=(\hat{\mathbf{L}} \bullet \mathbf{R}(\hat{\mathbf{E}}))^{s}$

Distributed light source!

Fresnel Reflectance

Schlick Approximation $F(\theta)=F(0)+(1-F(0))(1-\cos \theta)^{5}$

Experiment

Reflections from a shiny floor

[^0]
Analytical BRDF: TS example

- One famous analytically derived BRDF is the Torrance-Sparrow model.
- T-S is used to model specular surface, like the Phong model.
- more accurate than Phong
- has more parameters that can be set to match different materials
- derived based on assumptions of underlying geometry. (instead of 'because it works well')

Torrance-Sparrow

- Assume the surface is made up grooves at the microscopic level.

- Assume the faces of these grooves (called microfacets) are perfect reflectors.
- Take into account 3 phenomena

Shadowing Masking Interreflection

Other BRDF models

Complex Lighting

- So far we've looked at simple, discrete light sources.
- Real environments contribute many colors of light from many directions.
- The complex lighting of a scene can be captured in an Environment map.
- Just paint the environment on a sphere.

Environment Maps

- Instead of determining the lighting direction by knowing what lights exist, determine what light exists by knowing the lighting direction.

Blinn and Newell 1976, Miller and Hoffman, 1984 Later, Greene 86, Cabral et al. 87

Conclusion

- All this (OpenGL, physically based) are local illumination and shading models
- Good lighting, BRDFs produce convincing results
- Matrix movies, modern realistic computer graphics
- Do not consider global effects like shadows, interreflections (from one surface on another)
" Subject of next unit (global illumination)

What's Next

- Have finished basic material for the class
" Texture mapping lecture later today
- Review of illumination and Shading
- Remaining topics are global illumination (written assignment 2): Lectures on rendering eq, radiosity
- Historical movie: Story of Computer Graphics
- Likely to finish these by Dec 1: No class Dec 8,
- Work instead on HW 4, written assignments
- Dec 10? will be demo session for HW 4

[^0]: From Lafortune, Foo, Torrance, Greenberg, SIGGRAPH 97

