Computer Graphics (Fall 2008)

COMS 4160, Lectures 16, 17:
Nuts and bolts of Ray Tracing
Ravi Ramamoorthi

http://www.cs.columbia.edu/~cs4160

Acknowledgements: Thomas Funkhouser and Greg Humphr

Outline

Camera Ray Casting (choosing ray directions) [2.3]
Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations

Recursive ray tracing [2.6]

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Rbyl tiplesssttiolbffootss Bibetlonimtonibigdigliss i0ptenials)

Heckbert’s Business Card Ray Tracer

typedel struct{double xy zjvecvec U blackamb={.02,.02,.02}:struct sphere| vec cen color
double rad kd ks ki klir)'s, "best.sph}={0..6..5,1..1..1..9, .05..2..850.1.7.-1.8.-51..5.2.1.,
7.30.,.05121.8,-5.1,8.81.,3.70,0,123.6,15.1..81.7.0.0.0.615-3.-3.12,
8.1.,1.5,0,0.0.,.51.5) yxdouble ub tmin sqrt().tan();double vdot(A Bjvec A Breturn Ax
‘Ba+Ay'By+A.2"B.z;Jvec veomb(a, A Bjdouble avec A BjjB.x+=a" AxBy+=a’AyBiz+=a'Az;
retumn B:Jvec vunit/Ajvec A:jreturn veomb(1./sqrt{ vdot(A.A))A black):}struct sphere’intersect
(P.Djvec P,Di{best=0:tmin=1e30;s= sph+S5:while(s-->sph)b=vdot(D, U=vcomby{-1.,P.s->cen]),
u=b"b-vdoti U U} +s->rad’s ->rad u=u=07sqrt{u):1e31,u=b-u>1e-77b-ub+u tmin=u==1e-7 &&
u<tmin?best=s,u: tmin;return best;jvec trace(level P Djvec P D;[double d eta &vec Noolor;
struct sphere’s, [;if{!level--jretum black;if{s=intersect{P, D}}else retum amb;color=amb;efa=
$eair;d= -vdoti D N=vunitiveombi-1. P=vcomb(tmin D P),s-=cen }));if{d<0)N=vcomb(-1. N black),
ph+5; while{l->sph)if{{e=l -=kI"vdat(N,U=vun: P l->cen)j)j=0&&
lor=veombie |->colorcolor)U=s->colonecolor.x"=U x:colory"=U.y:color.z
1-d*d};retum veombis->kt e>0Ftrace(level, P vcombieta, D, veomb(eta“d-
lack veombis-sks trace(level, P veomb(2°d N D)), veombi(s-»kd, color,veomb
Jmain{printf Hodhin®,32,32);while{yx<32"32) Ux=yx%:32-32/2,U.z=32/2-
an{25/114.5915530261), U=vcomb(255., trace(3, black vunit{U}} black),printt

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)

Image image = new Image (width, height) ;
for (inti=0 ;i < height ; i++)
for (intj =0 ; j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
image[i][j] = FindColor (hit) ;
!

return image ;

Finding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Objects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)

Basic idea
Ray has origin (camera center) and direction
Find direction given camera params and i and j

Camera params as in gluLookAt
Lookfrom[3], LookAt[3], up[3], fov

Similar to gluLookAt derivation

gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)

Camera at eye, looking at center, with up direction being up

Up vector

From 4160 lecture 4 on deriving gluLookAt

Constructing a coordinate frame?

Camera coordinate frame

We want to associate w with a, and v with b
But a and b are neither orthogonal nor unit norm
And we also need to find u

Slide 20 from 4160 lecture 2

a bxw
= —_— u R ——rd
o B3]
‘We want to position camera at origin, looking down —Z dirn

Hence, vector a is given by eye — center

The vector b is simply the up vector / Up vector

Canonical viewing geometry

Outline

]
| —
L—1

au+ fv-w

ray = eye +

‘(lll + pv— w‘

—
—1

~

~—
~L
—

Jox), M] 5 = tan[22 [(height/ D) ~i
2 width/ 2 2 height /2

Camera Ray Casting (choosing ray directions) [2.3]
Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

Recursive ray tracing [2.6]

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0;i<height ; i++)
for (intj=0;j <width ; j++) {
Ray ray = RayThruPixel (cam, 1, j) ;
Intersection hit = Intersect (ray, scene) ;
image[i][j] = FindColor (hit) ;
¥

return image ;

Ray-Sphere Intersection

ray = P=PB+Pt
sphere=(P—C)«(P—C)—r*=0

Ray-Sphere Intersection

Ray-Sphere Intersection

ny = P= é} + ét
sphere=(P—C)s(P—C)—r*=0
Substitute
ry = BB+
sphere= (B, + Pt —C)s(P,+ Pt—C)—r* =0
Simplify
£(ReB)+2t Bo(F, ~C)+ (B~ C)(F, ~C)~1* =0

£ (FR)+2t Be(F, = C)+ (B, = C)«(F, - C)=r’ =0
Solve quadratic equations for t
2 real positive roots: pick smaller root
Both roots same: tangent to sphere

One positive, one negative root: ray

origin inside sphere (pick + root) @

Complex roots: no intersection (check

discriminant of equation first) /O

Ray-Sphere Intersection

Ray-Triangle Intersection

Intersection point: ray = P= f’o + }—’lt

Normal (for sphere, this is same as coordinates in
sphere frame of reference, useful other tasks)
P-C
normal =

P-4

One approach: Ray-Plane intersection, then check if

inside triangle 2
A _(C=Ax(B-4)

Plane equation: "TlCc=axB- 1)

plane = Peii — Asii = 0

Ray-Triangle Intersection

One approach: Ray-Plane intersection, then check if

inside triangle B
A 2o (C=AX(B=4)
Plane equation: [(C-4)x(B-2)

plane = Peji — A+ii =0
Combine with ray equation: c
ray = P=P+Pt Aeii — P oii
t=—s—

(B, + Bt)eii = A~ii Peii

Ray inside Triangle
Once intersect with plane, still need to find if in triangle

Many possibilities for triangles, general polygons (point
in polygon tests)

We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

P=aA+pBB+yC
a>0,4>0,7>0
a+pf+y=1

Other primitives
Much early work in ray tracing focused on ray-
primitive intersection tests
Cones, cylinders, ellipsoides
Boxes (especially useful for bounding boxes)
General planar polygons
Many more

Consult chapter in Glassner (handed out) for more
details and possible extra credit

utline

Camera Ray Casting (choosing ray directions) [2.3]
Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

Recursive ray tracing [2.6]

Ray inside Triangle

P=ad+fB+yC
@>0,520,7>0
a+f+y=1

P—A=B(B-A)+y(C—A)
0<pB<1,0<y<l1
P+y <1

Ray Scene Intersection

Intersection FindIntersection(Ray ray, Scene scene)

min_t = infinity

min_primitive = NULL
For each primitive in scene | 1)

t = Intersect{ray, primitive); / D
if (=0 && 1< min_t) then —
min_primitive = primitive
min_t =t
H
i

retum Intersection(min_t, min_primitive)

Tr ormed Objects

E.g. transform sphere into ellipsoid

Could develop routine to trace ellipsoid (compute
parameters after transformation)

May be useful for triangles, since triangle after
transformation is still a triangle in any case

But can also use original optimized routines

Transformed Objects

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

Apply inverse transform M-! to ray
Locations stored and transform in homogeneous coordinates
Vectors (ray directions) have homogeneous coordinate set to
0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-'n. Do all this before lighting

Outline

Outline in Code

Image Raytrace (Camera cam, Scene scene, int width, int height)
{
Image image = new Image (width, height) ;
for (inti=0 ;i <height ; i++)
for (intj =0 ; j <width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
imagelif[j] = FindColor (hit) ;
}

return image ;

Shadows: Numerical Issues
* Numerical inaccuracy may cause intersection to be
below surface (effect exaggerated in figure)
* Causing surface to incorrectly shadow itself
* Move a little towards light before shooting shadow ray

x

Camera Ray Casting (choosing ray directions) [2.3]
Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

Recursive ray tracing [2.6]

Light Source

Virtual Viewpoint

Virtual Screen Objects

Shadow ray to light is hithlke#tedbydujent shsithbav

Lighting Model

Similar to OpenGL

Lighting model parameters (global)
Ambient r g b (no per-light ambient as in OpenGL)
Attenuation const linear quadratic (like in OpenGL)
— LO
~ const+lin*d +quad *d*
Per light model parameters

Directional light (direction, RGB parameters)
Point light (location, RGB parameters)

Material Model Shading Model

Diffuse reflect: rgb L .
iffuse reflectance (r g b) [=K,+K,+Y L(K, max (,+n,0)+ K, (max(hen,0))")

Specular reflectance (r g b) i=1

Shininess s Global ambient term, emission from material

Emission (r g b) For each light, diffuse specular terms

All as in OpenGL Note visibility/shadowing for each light (not in
OpenGL)

Evaluated per pixel per light (not per vertex)

Outline Mirror Reflections/Refractions

Camera Ray Casting (choosing ray directions) [2.3]
Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

. . Virtual Viewpoint
Recursive ray tracing [2.6]

Virtual Screen Objects
Generate reflected ray in mir
Get reflections and refractions of objects

Basic idea

For each pixel
Trace Primary Eye Ray, find intersection

dary Shadow Ray(s) to all light(s)

ble ? Illumination Model : 0 ;

Trace Reflected Ray

Color += reflectivity * Color of reflected ray

Turner Whitted 1980

Recursive Shading Model

Problems with Recursion

]:K”+K(,+2 L,(K, max (/;*n,0)+ K (max(h,+n,0))")+ K [, + K,/

i=1
Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra credit)

Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

GetColor calls RayTrace recursively (the I values in
equation above of secondary rays are obtained by
recursive calls)

Effects needed for Realism

(Soft) Shadows

Reflections (Mirrors and Glossy)
Transparency (Water, Glass)
Interreflections (Color Bleeding)

Complex Illumination (Natural, Area Light)
Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture so far
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Reflection rays may be traced forever

Generally, set maximum recursion depth

Same for transmitted rays (take refraction into
account)

Some basic add ons

Area light sources and soft shadows: break into grid
of n x n point lights
Use jittering: Randomize direction of shadow ray within
small box for given light source direction
Jittering also useful for antialiasing shadows when shooting
primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations

Acceleration

Acceleration Structures

Testing each object for each ray is slow
Fewer Rays
Adaptive sampling, depth control
Generalized Rays
Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections
Optimized Ray-Object Intersections
Fewer Intersections

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’t check objects

A PAN
9V v

Bounding Box

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Bounding Volume Hierarchies 1 Bounding Volume Hierarchies 2

« Build hierarchy of bounding volumes » Use hierarchy to accelerate ray intersections
= Bounding volume of interior node contains all children » Intersect node contents only if hit bounding volume

Bounding Volume Hierarchies 3 Acceleration Structures: Grids

= Sort hits & detect early termination
FindIntersection{ Ray ray. Node node)
Find intersections with child node bounding volumes
Sort intersections front to back
Process intersections (checking for early termination)
min_t = infinity;
for each intersected child i |
if (min_t=< bv_tfi]) break;
shape_t = FindIntersection({ray, child);

if (shape_t < min_t) | min_t = shape_t:}

returm min_t

Uniform Grid: Problems Octree
« Potential problem: « Construct adaptive grid over scene

How choose suitable grid resolution? o Recursively subdivide box-shaped cells into 8 octants
+ Index primitives by overlaps with cells

_ i '_'.'I.‘.E\:f et G
| Too little benefit R :
Ecieoreans g S | Generally fewer cells |
| Too much cost g
if grid is too fine

Octree traversal Other Accelerations

+ Trace rays through neighbor cells Screen space coherence
> Fewer cells > Check last hit first
= More complex neighbor finding - Beam tracing
= Pencil tracing
= Cone tracing

| Trade-off fewer cells for il Memory coherence
more expensive traversal A > Large scenes

Parallelism
- Ray casting is “embarassingly parallelizable”

etc.

Interactive Raytracing Raytracing on Graphics Hardware

Ray tracing historically slow Modern Programmable Hardware general

. . streaming architecture
Now viable alternative for complex scenes

Key is sublinear complexity with acceleration; need not Can map various elements of ray tracing
process all triangles in scene))
: Kernels like eye rays, intersect etc.
Allows many effects hard in hardware

; : ; In vertex or fragment programs
OpenRT project real-time ray tracing
(http://www.opentt.de) Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

— Ring - Stencil Routing —— Cornell Box - Bitonic Sort

Glass Ball - Stencil Routing Cornell Box - Increased Search Radius

