
1

Computer Graphics (Fall 2008)Computer Graphics (Fall 2008)

COMS 4160, Lectures 16, 17:

Nuts and bolts of Ray Tracing

Ravi Ramamoorthi

http://www.cs.columbia.edu/~cs4160

Acknowledgements: Thomas Funkhouser and Greg Humphreys

HeckbertHeckbert’’ss Business Card Ray TracerBusiness Card Ray Tracer

OutlineOutline

Camera Ray Casting (choosing ray directions) [2.3]

Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

Recursive ray tracing [2.6]

Outline in CodeOutline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Image image = new Image (width, height) ;

for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;

Intersection hit = Intersect (ray, scene) ;

image[i][j] = FindColor (hit) ;

}

return image ;

}

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)

Finding Ray DirectionFinding Ray Direction

Goal is to find ray direction for given pixel i and j

Many ways to approach problem
Objects in world coord, find dirn of each ray (we do this)
Camera in canonical frame, transform objects (OpenGL)

Basic idea
Ray has origin (camera center) and direction
Find direction given camera params and i and j

Camera params as in gluLookAt
Lookfrom[3], LookAt[3], up[3], fov

2

Similar to Similar to gluLookAtgluLookAt derivationderivation
gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,
upy, upz)

Camera at eye, looking at center, with up direction being up

Eye

Up vector

Center
From 4160 lecture 4 on deriving gluLookAt

Constructing a coordinate frame?Constructing a coordinate frame?

aw
a

=

We want to associate w with a, and v with b
But a and b are neither orthogonal nor unit norm
And we also need to find u

b wu
b w
×

=
×

v w u= ×

Slide 20 from 4160 lecture 2

Camera coordinate frameCamera coordinate frame
aw
a

=

We want to position camera at origin, looking down –Z dirn

Hence, vector a is given by eye – center

The vector b is simply the up vector

b wu
b w
×

=
×

v w u= ×

Eye

Up vector

Center

Canonical viewing geometryCanonical viewing geometry

-w αu

βv

(/ 2) (/ 2)tan tan
2 / 2 2 / 2

fovx j width fovy height i
width height

α β
 − −     = × = ×      

       

u v wray eye
u v w

α β
α β

+ −
= +

+ −

OutlineOutline

Camera Ray Casting (choosing ray directions) [2.3]

Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

Recursive ray tracing [2.6]

Outline in CodeOutline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Image image = new Image (width, height) ;

for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;

Intersection hit = Intersect (ray, scene) ;

image[i][j] = FindColor (hit) ;

}

return image ;

}

3

RayRay--Sphere IntersectionSphere Intersection

0 1

2() () 0

ray P P Pt

sphere P C P C r

≡ = +

≡ − − − =

G G G

G GG G
i

C

P0

RayRay--Sphere IntersectionSphere Intersection

0 1

2() () 0

ray P P Pt

sphere P C P C r

≡ = +

≡ − − − =

G G G

G GG G
i

Substitute

0 1

2
0 1 0 1() () 0

ray P P Pt

sphere P Pt C P Pt C r

≡ = +

≡ + − + − − =

G G G

G GG G G G
i

Simplify
2 2

1 1 1 0 0 0() 2 () () () 0t P P t P P C P C P C r+ − + − − − =
G G GG G G G G G

i i i

RayRay--Sphere IntersectionSphere Intersection
2 2

1 1 1 0 0 0() 2 () () () 0t P P t P P C P C P C r+ − + − − − =
G G GG G G G G G

i i i
Solve quadratic equations for t

2 real positive roots: pick smaller root

Both roots same: tangent to sphere

One positive, one negative root: ray
origin inside sphere (pick + root)

Complex roots: no intersection (check
discriminant of equation first)

RayRay--Sphere IntersectionSphere Intersection

Intersection point:

Normal (for sphere, this is same as coordinates in
sphere frame of reference, useful other tasks)

0 1ray P P Pt≡ = +
G G G

P Cnormal
P C
−

=
−

GG
GG

RayRay--Triangle IntersectionTriangle Intersection

One approach: Ray-Plane intersection, then check if
inside triangle

Plane equation:
A

B

C

() ()
() ()
C A B An
C A B A
− × −

=
− × −

0plane P n A n≡ − =
GG G Gi i

RayRay--Triangle IntersectionTriangle Intersection

One approach: Ray-Plane intersection, then check if
inside triangle

Plane equation:

Combine with ray equation:

A
B

C

() ()
() ()
C A B An
C A B A
− × −

=
− × −

0plane P n A n≡ − =
GG G Gi i

0 1

0 1()

ray P P Pt

P Pt n A n

≡ = +

+ =

G G G

GG G G Gi i
0

1

A n P nt
P n
−

=
G GG Gi iG Gi

4

Ray inside TriangleRay inside Triangle
Once intersect with plane, still need to find if in triangle

Many possibilities for triangles, general polygons (point
in polygon tests)

We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A
B

C

P
α β

γ

0, 0, 0
1

P A B Cα β γ
α β γ
α β γ

= + +
≥ ≥ ≥
+ + =

Ray inside TriangleRay inside Triangle

A
B

C

P
α β

γ

0, 0, 0
1

P A B Cα β γ
α β γ
α β γ

= + +
≥ ≥ ≥
+ + =

() ()P A B A C Aβ γ− = − + −

0 1 , 0 1
1

β γ
β γ
≤ ≤ ≤ ≤
+ ≤

Other primitivesOther primitives

Much early work in ray tracing focused on ray-
primitive intersection tests

Cones, cylinders, ellipsoides

Boxes (especially useful for bounding boxes)

General planar polygons

Many more

Consult chapter in Glassner (handed out) for more
details and possible extra credit

Ray Scene IntersectionRay Scene Intersection

OutlineOutline

Camera Ray Casting (choosing ray directions) [2.3]

Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

Recursive ray tracing [2.6]

Transformed ObjectsTransformed Objects

E.g. transform sphere into ellipsoid

Could develop routine to trace ellipsoid (compute
parameters after transformation)

May be useful for triangles, since triangle after
transformation is still a triangle in any case

But can also use original optimized routines

5

Transformed ObjectsTransformed Objects

Consider a general 4x4 transform M
Will need to implement matrix stacks like in OpenGL

Apply inverse transform M-1 to ray
Locations stored and transform in homogeneous coordinates
Vectors (ray directions) have homogeneous coordinate set to
0 [so there is no action because of translations]

Do standard ray-surface intersection as modified

Transform intersection back to actual coordinates
Intersection point p transforms as Mp
Distance to intersection if used may need recalculation
Normals n transform as M-tn. Do all this before lighting

OutlineOutline

Camera Ray Casting (choosing ray directions) [2.3]

Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

Recursive ray tracing [2.6]

Outline in CodeOutline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Image image = new Image (width, height) ;

for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;

Intersection hit = Intersect (ray, scene) ;

image[i][j] = FindColor (hit) ;

}

return image ;

}

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visibleShadow ray to light is blocked: object in shadow

Shadows: Numerical Issues
• Numerical inaccuracy may cause intersection to be

below surface (effect exaggerated in figure)
• Causing surface to incorrectly shadow itself
• Move a little towards light before shooting shadow ray

Lighting ModelLighting Model

Similar to OpenGL

Lighting model parameters (global)
Ambient r g b (no per-light ambient as in OpenGL)
Attenuation const linear quadratic (like in OpenGL)

Per light model parameters
Directional light (direction, RGB parameters)
Point light (location, RGB parameters)

0
2* *

LL
const lin d quad d

=
+ +

6

Material ModelMaterial Model

Diffuse reflectance (r g b)

Specular reflectance (r g b)

Shininess s

Emission (r g b)

All as in OpenGL

Shading ModelShading Model

Global ambient term, emission from material

For each light, diffuse specular terms

Note visibility/shadowing for each light (not in
OpenGL)

Evaluated per pixel per light (not per vertex)

1
(max (,0) (max(,0)))

n
s

a e i d i s i
i

iI K K L K l n K h nV
=

= + + +∑ i i

OutlineOutline

Camera Ray Casting (choosing ray directions) [2.3]

Ray-object intersections [2.4]

Ray-tracing transformed objects [2.4]

Lighting calculations [2.5]

Recursive ray tracing [2.6]

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Turner Whitted 1980

Basic ideaBasic idea

For each pixel
Trace Primary Eye Ray, find intersection

Trace Secondary Shadow Ray(s) to all light(s)
Color = Visible ? Illumination Model : 0 ;

Trace Reflected Ray
Color += reflectivity * Color of reflected ray

7

Recursive Shading ModelRecursive Shading Model

Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra credit)

Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

GetColor calls RayTrace recursively (the I values in
equation above of secondary rays are obtained by
recursive calls)

1
(max (,0) (max(,0)))

n
s

a e i d i s si
i

R T TiI K K LV K I K IK l n K h n
=

= + + + + +∑ i i

Problems with RecursionProblems with Recursion

Reflection rays may be traced forever

Generally, set maximum recursion depth

Same for transmitted rays (take refraction into
account)

Effects needed for Realism
• (Soft) Shadows
• Reflections (Mirrors and Glossy)
• Transparency (Water, Glass)
• Interreflections (Color Bleeding)
• Complex Illumination (Natural, Area Light)
• Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture so far
Not discussed but possible with distribution ray tracing
Hard (but not impossible) with ray tracing; radiosity methods

Some basic add Some basic add onsons

Area light sources and soft shadows: break into grid
of n x n point lights

Use jittering: Randomize direction of shadow ray within
small box for given light source direction
Jittering also useful for antialiasing shadows when shooting
primary rays

More complex reflectance models
Simply update shading model
But at present, we can handle only mirror global
illumination calculations

AccelerationAcceleration

Testing each object for each ray is slow
Fewer Rays

Adaptive sampling, depth control
Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
Faster Intersections

Optimized Ray-Object Intersections
Fewer Intersections

Acceleration StructuresAcceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

8

Bounding Volume Hierarchies 1Bounding Volume Hierarchies 1 Bounding Volume Hierarchies 2Bounding Volume Hierarchies 2

Bounding Volume Hierarchies 3Bounding Volume Hierarchies 3 Acceleration Structures: GridsAcceleration Structures: Grids

Uniform Grid: ProblemsUniform Grid: Problems OctreeOctree

9

OctreeOctree traversaltraversal Other AccelerationsOther Accelerations

Interactive Interactive RaytracingRaytracing

Ray tracing historically slow

Now viable alternative for complex scenes
Key is sublinear complexity with acceleration; need not
process all triangles in scene

Allows many effects hard in hardware

OpenRT project real-time ray tracing
(http://www.openrt.de)

RaytracingRaytracing on Graphics Hardwareon Graphics Hardware

Modern Programmable Hardware general
streaming architecture

Can map various elements of ray tracing

Kernels like eye rays, intersect etc.

In vertex or fragment programs

Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

