Computer Graphics (Fall 2008)

COMS 4160, Lecture 18: Illumination and Shading 1 http://www.cs.columbia.edu/~cs4160

Rendering: 1960s (visibility)

" Roberts (1963), Appel (1967) - hidden-line algorithms
" Warnock (1969), Watkins (1970) - hidden-surface
" Sutherland (1974) - visibility = sorting

Rendering (1980s, 90s: Global Illumination)
early 1980s - global illumination
" Whitted (1980) - ray tracing

- Goral, Torrance et al. (1984) radiosity
- Kajiya (1986) - the rendering equation

Outline

" Preliminaries

- Basic diffuse and Phong shading
- Gouraud, Phong interpolation, smooth shading
- Formal reflection equation

Motivation

- Objects not flat color, perceive shape with appearance
- Materials interact with lighting
- Compute correct shading pattern based on lighting
- This is not the same as shadows (separate topic)
- Some of today's lecture review of last OpenGL lec.
- Idea is to discuss illumination, shading independ. OpenGL
- Today, initial hacks (1970-1980)
" Next lecture: formal notation and physics

Linear Relationship of Light

- Light energy is simply sum of all contributions

$$
I=\sum_{k} I_{k}
$$

- Terms can be calculated separately and later added:
- multiple light sources
" multiple interactions (diffuse, specular, more later)
- multiple colors (R-G-B, or per wavelength)

General Considerations

Surfaces have a position, and a normal at every point.

Other vectors used

- $\mathrm{L}=$ vector to the light source light position minus surface point position
- $\mathrm{E}=$ vector to the viewer (eye) viewer position minus surface point position

Diffuse Lambertian Term

- Rough matte (technically Lambertian) surfaces
- Not shiny: matte paint, unfinished wood, paper, ...
- Light reflects equally in all directions
- Obey Lambert's cosine law
" Not exactly obeyed by real materials

Meaning of negative dot products

- If (N dot L) is negative, then the light is behind the surface, and cannot illuminate it.

- If (N dot E) is negative, then the viewer is looking at the underside of the surface and cannot see it's front-face.

- In both cases, I is clamped to Zero.

Idea of Phong IIlumination

- Specular or glossy materials: highlights
" Polished floors, glossy paint, whiteboards
- For plastics highlight is color of light source (not object)
- For metals, highlight depends on surface color
- Really, (blurred) reflections of light source
- Find a simple way to create highlights that are viewdependent and happen at about the right place
- Not physically based
- Use dot product (cosine) of eye and reflection of light direction about surface normal
- Alternatively, dot product of half angle and normal
- Raise cosine lobe to some power to control sharpness

Phong Formula

$$
I \sim(R \cdot E)^{p}
$$

$$
R=?
$$

$$
R=-L+2(L \cdot N) N
$$

Alternative: Half-Angle (Blinn-Phong)

$$
I \sim(N \cdot H)^{p}
$$

" In practice, both diffuse and specular components

Triangle Meshes as Approximations

- Most geometric models large collections of triangles.
- Triangles have 3 vertices with position, color, normal
- Triangles are approximation to actual object surface

Not in text. If interested, look at FvDFH pp 736-738

Vertex Shading

- We know how to calculate the light intensity given:
" surface position
- normal
- viewer position
- light source position (or direction)
- 2 ways for a vertex to get its normal:
" given when the vertex is defined
- take normals from faces that share vertex, and average

Coloring Inside the Polygon

- How do we shade a triangle between it's vertices, where we aren't given the normal?
- Inter-vertex interpolation can be done in object space (along the face), but it is simpler to do it in image space (along the screen).

Flat vs. Gouraud Shading

Flat - Determine that each face has a single normal, and color the entire face a single value, based on that normal.
Gouraud - Determine the color at each vertex, using the normal at that vertex, and interpolate linearly for the pixels between the vertex locations.

Gouraud and Errors

- $\mathrm{I}_{1}=0$ because (N dot E) is negative.
- $\mathrm{I}_{2}=0$ because $(\mathrm{N}$ dot L$)$ is negative.
- Any interpolation of I_{1} and I_{2} will be 0 .

Gouraud Shading - Details

Actual implementation efficient: difference equations while scan converting

2 Phongs make a Highlight

- Besides the Phong Reflectance model $\left(\cos ^{\mathrm{n}}\right)$, there is a Phong Shading model.
- Phong Shading: Instead of interpolating the intensities between vertices, interpolate the normals.
- The entire lighting calculation is performed for each pixel, based on the interpolated normal. (OpenGL doesn't do this, but you can with current programmable shaders)

Problems with Interpolated Shading

- Silhouettes are still polygonal
- Interpolation in screen, not object space: perspective distortion
- Not rotation or orientation-independent
- How to compute vertex normals for sharply curving surfaces?
- But at end of day, polygons are mostly preferred to explicitly representing curved objects like spline patches for rendering

Outline

- Preliminaries
- Basic diffuse and Phong shading
- Gouraud, Phong interpolation, smooth shading
- Formal reflection equation

Motivation

- Lots of ad-hoc tricks for shading
- Kind of looks right, but?
- Physics of light transport
- Will lead to formal reflection equation
- One of the more formal lectures
- But important to solidify theoretical framework

Angles and Solid Angles

- Angle $\theta=\frac{l}{r}$
\Rightarrow circle has 2π radians
- Solid angle $\Omega=\frac{A}{R^{2}}$
\Rightarrow sphere has 4π steradians

The Light Field

Electromagnetic waves and power spectrum


```
            \because...
```

Ignore polarization Ignore photons

Spatial distribution

From London and Upton
CS348B Lecture 4

Radiance

- Power per unit projected area perpendicular to the ray per unit solid angle in the direction of the ray
- Symbol: $L(x, \omega)\left(W / m^{2}\right.$ sr)
- Flux given by
$d \Phi=L(x, \omega) \cos \theta d \omega d A$

Radiance properties

- Radiance is constant as it propagates along ray
- Derived from conservation of flux
- Fundamental in Light Transport.

$$
\begin{aligned}
& d \Phi_{1}=L_{1} d \omega_{1} d A_{1}=L_{2} d \omega_{2} d A_{2}=d \Phi_{2} \\
& d \omega_{1}=d A_{2} / r^{2} \quad d \omega_{2}=d A_{1} / r^{2} \\
& d \omega_{1} d A_{1}=\frac{d A_{1} d A_{2}}{r^{2}}=d \omega_{2} d A_{2} \\
& \therefore L_{1}=L_{2}
\end{aligned}
$$

Radiance properties

- Sensor response proportional to radiance (constant of proportionality is throughput)
- Far away surface: See more, but subtends smaller angle
- Wall equally bright across viewing distances

Consequences

- Radiance associated with rays in a ray tracer
- Other radiometric quants derived from radiance

Quiz

Does the brightness that a wall appears to the eye depend on the distance of the viewer to the wall?

CS348B Lecture 4

Irradiance, Radiosity

- Irradiance E is radiant power per unit area
- Integrate incoming radiance over hemisphere
- Projected solid angle ($\cos \theta \mathrm{d} \omega$)
- Uniform illumination: Irradiance $=\pi$ [CW 24,25]
- Units: W/m²
- Radiosity

Figure 2.8. Projection of differentiol amen

- Power per unit area leaving surface (like irradiance)

Building up the BRDF

- Bi-Directional Reflectance Distribution Function [Nicodemus 77]
- Function based on incident, view direction
- Relates incoming light energy to outgoing light energy
- We have already seen special cases: Lambertian, Phong
- In this lecture, we study all this abstractly

The BRDF

Bidirectional Reflectance-Distribution Function

$$
f_{r}\left(\omega_{1} \rightarrow \omega_{r}\right) \equiv \frac{d L_{r}\left(\omega_{i} \rightarrow \omega_{r}\right)}{d E_{i}}\left[\frac{1}{s r}\right]
$$

BRDF

- Reflected Radiance proportional to Irradiance
- Constant proportionality: BRDF [CW pp 28,29]
- Ratio of outgoing light (radiance) to incoming light (irradiance)
- Bidirectional Reflection Distribution Function
- (4 Vars) units 1/sr

$$
\begin{aligned}
f\left(\omega_{i}, \omega_{r}\right) & =\frac{L_{r}\left(\omega_{r}\right)}{L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i}} \\
L_{r}\left(\omega_{r}\right) & =L_{i}\left(\omega_{i}\right) f\left(\omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
\end{aligned}
$$

