
1

Computer Graphics (Spring 2008)Computer Graphics (Spring 2008)

COMS 4160, Lecture 9: OpenGL 1
http://www.cs.columbia.edu/~cs4160

To DoTo Do

Start thinking (now) about HW 3. Milestones are due
soon.

Course OutlineCourse Outline

3D Graphics Pipeline

Rendering
(Creating, shading images from
geometry, lighting, materials)

Modeling
(Creating 3D Geometry)

Course OutlineCourse Outline

3D Graphics Pipeline

Rendering
(Creating, shading images from
geometry, lighting, materials)

Modeling
(Creating 3D Geometry)

Unit 1: Transformations
Weeks 1,2. Ass 1 due Feb 14

Unit 2: Spline Curves
Weeks 3,4. Ass 2 due Feb 26

Unit 3: OpenGL
Weeks 5-7.
Ass 3 due ??

Midterm on units 1-3: Mar 10

Demo: Surreal (HW 3)Demo: Surreal (HW 3) Methodology for LectureMethodology for Lecture

This unit different from others in course
Other units stress mathematical understanding
This stresses implementation details and programming

I am going to show (maybe write) actual code
Same code (with comments) available online to help you
understand how to implement basic concepts
I hope the online code helps you understand HW 3 better
ASK QUESTIONS if confused!!

Simple demo 4160-opengl\opengl1\opengl1-orig.exe
This lecture deals with very basic OpenGL setup. Next 2
lectures will likely be more interesting

2

OutlineOutline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks

Drawing basic OpenGL primitives

Best source for OpenGL is the redbook. Of course, this is more a reference
manual than a textbook, and you are better off implementing rather reading
end to end. Though if you do have time, the book is actually quite readable

Introduction to OpenGLIntroduction to OpenGL

OpenGL is a graphics API
Software library
Layer between programmer and graphics hardware (and
software)

OpenGL can fit in many places
Between application and graphics system
Between higher level API and graphics system

ProgrammerProgrammer’’s Views View

Application

Graphics PackageApplication

OpenGL Application Programming Interface

Hardware and software

Output Device Input Device Input Device

OpenGL Rendering PipelineOpenGL Rendering Pipeline

Geometry
Primitive
Operations

Pixel
Operations

Scan
Conversion

Texture
Memory

Fragment
Operations

Fram
ebuffer

Vertices

Images

Many operations controlled by state (projection matrix, transformation matrix, color etc.)

OpenGL is a large state machine

OpenGL Rendering PipelineOpenGL Rendering Pipeline

Geometry
Primitive
Operations

Pixel
Operations

Scan
Conversion

Texture
Memory

Fragment
Operations

Fram
ebuffer

Vertices

Images

Traditional Approach: Fixed function pipeline (state machine)
New Development (2003-): Programmable pipeline

Programmable in
Modern GPUs

Programmable in
Modern GPUs

GPUsGPUs and Programmabilityand Programmability

Since 2003, can write vertex/pixel shaders

Fixed function pipeline special type of shader

Like writing C programs (see back of OpenGL book)

Performance >> CPU (even used for non-graphics)

3

GPUsGPUs and Programmabilityand Programmability

Since 2003, can write vertex/pixel shaders

Fixed function pipeline special type of shader

Like writing C programs (see back of OpenGL book)

Performance >> CPU (even used for non-graphics)

But parallel paradigm
All pixels/vertices operate in parallel
Severe performance overheads for control flow, loops
(limitations beginning to be relaxed in modern releases)

Not directly covered in COMS 4160
But you can make use of in assignments for extra credit

Why OpenGL?Why OpenGL?

Fast

Simple

Window system independent

Supports some high-end graphics features

Geometric and pixel processing

Standard, available on many platforms

OutlineOutline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks

Drawing basic OpenGL primitives

Buffers and Window InteractionsBuffers and Window Interactions

Buffers: Color (front, back, left, right), depth (z),
accumulation, stencil. When you draw, you write to
some buffer (most simply, front and depth)

No window system interactions (for portability)
But can use GLUT (or Motif, GLX, Tcl/Tk)
Callbacks to implement mouse, keyboard interaction

Basic setup code (you will likely copy)Basic setup code (you will likely copy)
int main(int argc, char** argv)
{

glutInit(&argc, argv);

// Requests the type of buffers (Single, RGB).
// Think about what buffers you would need...
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow ("Simple Demo");
init (); // Always initialize first

// Now, we define callbacks and functions for various tasks.
glutDisplayFunc(display);
glutReshapeFunc(reshape) ;
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse) ;
glutMotionFunc(mousedrag) ;

glutMainLoop(); // Start the main code
return 0; /* ANSI C requires main to return int. */

}

OutlineOutline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks

Drawing basic OpenGL primitives

4

Viewing consists of two parts
Object positioning: model view transformation matrix
View projection: projection transformation matrix

OpenGL supports both perspective and orthographic viewing
transformations

OpenGL’s camera is always at the origin, pointing in the –z
direction

Transformations move objects relative to the camera

Matrices right-multiply top of stack.
(Last transform in code is first actually applied)

Viewing in OpenGLViewing in OpenGL Basic initialization codeBasic initialization code
#include <GL/glut.h>
#include <stdlib.h>

int mouseoldx, mouseoldy ; // For mouse motion
GLdouble eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2

void init (void)
{
/* select clearing color */

glClearColor (0.0, 0.0, 0.0, 0.0);

/* initialize viewing values */
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

// Think about this. Why is the up vector not normalized?
glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity() ;
gluLookAt(0,-eyeloc,eyeloc,0,0,0,0,1,1) ;

}

OutlineOutline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks

Drawing basic OpenGL primitives

Window System InteractionWindow System Interaction

Not part of OpenGL

Toolkits (GLUT) available

Callback functions for events
Keyboard, Mouse, etc.
Open, initialize, resize window
Similar to other systems (X, Java, etc.)

Our main func included
glutDisplayFunc(display);
glutReshapeFunc(reshape) ;
glutKeyboardFunc(keyboard);
glutMouseFunc(mouse) ;
glutMotionFunc(mousedrag) ;

Basic window interaction codeBasic window interaction code
/* Defines what to do when various keys are pressed */
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27: // Escape to quit

exit(0) ;
break ;

default:
break ;

}
}

/* Reshapes the window appropriately */
void reshape(int w, int h)
{

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluPerspective(30.0, (GLdouble)w/(GLdouble)h, 1.0, 10.0) ;
}

Mouse motionMouse motion (demo (demo 41604160--opengl1opengl1\\opengl1opengl1--orig.exorig.exee))
/* Defines a Mouse callback to zoom in and out */
/* This is done by modifying gluLookAt */
/* The actual motion is in mousedrag */
/* mouse simply sets state for mousedrag */
void mouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON) {

if (state == GLUT_UP) {
// Do Nothing ;

}
else if (state == GLUT_DOWN) {

mouseoldx = x ; mouseoldy = y ; // so we can move wrt x , y
}

}
else if (button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

{ // Reset gluLookAt
eyeloc = 2.0 ;
glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity() ;
gluLookAt(0,-eyeloc,eyeloc,0,0,0,0,1,1) ;
glutPostRedisplay() ;

}
}

5

Mouse dragMouse drag (demo (demo 41604160--opengl1opengl1\\opengl1opengl1--orig.exorig.exee))

void mousedrag(int x, int y) {
int yloc = y - mouseoldy ; // We will use the y coord

to zoom in/out
eyeloc += 0.005*yloc ; // Where do we look from
if (eyeloc < 0) eyeloc = 0.0 ;
mouseoldy = y ;

/* Set the eye location */
glMatrixMode(GL_MODELVIEW) ;
glLoadIdentity() ;
gluLookAt(0,-eyeloc,eyeloc,0,0,0,0,1,1) ;

glutPostRedisplay() ;
}

OutlineOutline

Basic idea about OpenGL

Basic setup and buffers

Matrix modes

Window system interaction and callbacks

Drawing basic OpenGL primitives

OpenGL PrimitivesOpenGL Primitives

Points Lines Polygon

Triangle Quad Quad Strip

Triangle Strip Triangle Fan

GLUT 3D PrimitivesGLUT 3D Primitives

Cube Sphere

Teapot

And others…

Drawing ideaDrawing idea

Enclose vertices between glBegin() … glEnd() pair
Can include normal C code and attributes like the colors of
points, but not other OpenGL commands
Inside are commands like glVertex3f, glColor3f
Attributes must be set before the vertex

Assembly line model (pass vertices, transform, clip,
shade)

Client-Server model (client generates vertices, server
draws) even if on same machine

glFlush() forces client to send network packet
glFinish() waits for ack, sparingly use synchronization

Geometry Geometry
Points (GL_POINTS)
Stored in Homogeneous coordinates

Line segments (GL_LINES)

Polygons
Simple, convex (take your chances with concave)
Tessellate, GLU for complex shapes
Rectangles: glRect

Special cases (strips, loops, triangles, fans, quads)

More complex primitives (GLUT): Sphere, teapot, cube,…

6

Specifying GeometrySpecifying Geometry

glBegin(GL_POLYGON) ; // Chapter 2 but I do Counter Clock W
glVertex2f (4.0, 0.0) ;
glVertex2f (6.0, 1.5) ;
glVertex2f (4.0, 3.0) ;
glVertex2f (0.0, 3.0) ;
glVertex2f (0.0, 0.0) ;
// glColor, glIndex, glNormal, glTexCoord, … (pp 47)
// glMaterial, glArrayElement, glEvalCoord, … (pp 48)
// Other GL commands invalid between begin and end
// Can write normal C code…

glEnd() ;

(0,0) (4,0)
(6,1.5)

(4,3)(0,3)

Drawing in Display RoutineDrawing in Display Routine
void display(void)
{

glClear (GL_COLOR_BUFFER_BIT);

// draw polygon (square) of unit length centered at the origin
// This code draws each vertex in a different color.
// The hardware will blend between them.
// This is a useful debugging trick. I make sure each vertex
// appears exactly where I expect it to appear.

glBegin(GL_POLYGON);
glColor3f (1.0, 0.0, 0.0);
glVertex3f (0.5, 0.5, 0.0);
glColor3f (0.0, 1.0, 0.0);
glVertex3f (-0.5, 0.5, 0.0);
glColor3f (0.0, 0.0, 1.0);
glVertex3f (-0.5, -0.5, 0.0);
glColor3f (1.0, 1.0, 1.0);
glVertex3f (0.5, -0.5, 0.0);

glEnd();
glFlush () ;

}

(-.5, -.5)
BLUE

(.5, -.5)
WHITE

(.5, .5)
RED

(-.5, .5)
GREEN

Demo (change colors)Demo (change colors)

