
1

Computer Graphics (Spring 2008)Computer Graphics (Spring 2008)

COMS 4160, Lecture 5: Viewing
http://www.cs.columbia.edu/~cs4160

To DoTo Do

Questions/concerns about assignment 1?

Remember it is due Thu. Ask me or TA if any problems.

MotivationMotivation

We have seen transforms (between coord systems)

But all that is in 3D

We still need to make a 2D picture

Project 3D to 2D. How do we do this?

This lecture is about viewing transformations

Demo (Projection Tutorial)Demo (Projection Tutorial)

Nate Robbins OpenGL
tutors

Projection.exe

Download others

What weWhat we’’ve seen so farve seen so far
Transforms (translation, rotation, scale) as 4x4
homogeneous matrices

Last row always 0 0 0 1. Last w component always 1

For viewing (perspective), we will use that last row
and w component no longer 1 (must divide by it)

OutlineOutline

Orthographic projection (simpler)

Perspective projection, basic idea

Derivation of gluPerspective (handout: glFrustum)

Brief discussion of nonlinear mapping in z

Not well covered in textbook chapter 7. We follow section 3.5 of real-time rendering
most closely. Handouts on this will be given out.

2

ProjectionsProjections

To lower dimensional space (here 3D -> 2D)

Preserve straight lines

Trivial example: Drop one coordinate (Orthographic)

Orthographic ProjectionOrthographic Projection

Characteristic: Parallel lines remain parallel

Useful for technical drawings etc.

Orthographic Perspective
Fig 7.1 in text

ExampleExample

Simply project onto xy plane, drop z coordinate

In generalIn general
We have a cuboid that we want to map to the
normalized or square cube from [-1, +1] in all axes

We have parameters of cuboid (l,r ; t,b; n,f)

Orthographic MatrixOrthographic Matrix
First center cuboid by translating

Then scale into unit cube

CaveatsCaveats
Looking down –z, f and n are negative (n > f)

OpenGL convention: positive n, f, negate internally

3

Transformation MatrixTransformation Matrix

2 0 0 0 1 0 0
2

20 0 0 0 1 0
2

20 0 0 0 0 1
2

0 0 0 10 0 0 1

l r
r l

t b
t bM

f n
f n

  + −   −   
+   −   −=

   +   −
 −  
       

Scale Translation (centering)

Final ResultFinal Result

2 0 0

20 0

20 0

0 0 0 1

r l
r l r l

t b
t b t bM

f n
f n f n

+ − − − 
+ − − −=

 + −
 − −
  
 

2 0 0

20 0

20 0

0 0 0 1

r l
r l r l

t b
t b t bglOrtho

f n
f n f n

+ − − − 
+ − − −=

 + −
 − −


−

 
 

OutlineOutline

Orthographic projection (simpler)

Perspective projection, basic idea

Derivation of gluPerspective (handout: glFrustum)

Brief discussion of nonlinear mapping in z

Perspective ProjectionPerspective Projection

Most common computer graphics, art, visual system

Further objects are smaller (size, inverse distance)

Parallel lines not parallel; converge to single point

B

A’

B’
Center of projection

(camera/eye location)

A
Plane of Projection

Overhead View of Our ScreenOverhead View of Our Screen

Looks like we’ve got some nice similar triangles here?
x x d xx
z d z

′ ∗′= ⇒ = *y y d yy
z d z

′
′= ⇒ =

(), ,x y d′ ′
(), ,x y z

d

()0,0,0

In MatricesIn Matrices

Note negation of z coord (focal plane –d)

(Only) last row affected (no longer 0 0 0 1)

w coord will no longer = 1. Must divide at end

1 0 0 0
0 1 0 0
0 0 1 0

10 0 0

P

d

 
 
 

=  
 
 − 
 

4

VerifyVerify

1 0 0 0
0 1 0 0

?0 0 1 0
1 10 0 0

x
y
z

d

          =        −    

*

*

1

1

d xx
zy d y

z z
d

d

 −         −=      − −        

OutlineOutline

Orthographic projection (simpler)

Perspective projection, basic idea

Derivation of gluPerspective (handout: glFrustum)

Brief discussion of nonlinear mapping in z

Remember projection tutorialRemember projection tutorial Viewing FrustumViewing Frustum

Near plane

Far plane

Screen (Projection Plane)Screen (Projection Plane)

Field of view
(fovy)

width

height

Aspect ratio = width / height

gluPerspectivegluPerspective

gluPerspective(fovy, aspect, zNear > 0, zFar > 0)

Fovy, aspect control fov in x, y directions

zNear, zFar control viewing frustum

5

Overhead View of Our ScreenOverhead View of Our Screen

(), ,x y d′ ′
(), ,x y z

d

()0,0,0 1θ

? ?dθ = =

cot
2

fovy dθ θ= =

In MatricesIn Matrices

Simplest form:

Aspect ratio taken into account

Homogeneous, simpler to multiply through by d

Must map z values based on near, far planes (not yet)

1 0

1 0 0 0

0 1 0 0
0 0

10 0 0

aspect

P

d

 
 
 
 

=  
 
 

− 
 

In MatricesIn Matrices

A and B selected to map n and f to -1, +1 respectively

1 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 0 0

1 0 0 1 00 0 0

1 0

d
aspect aspec

A B

t
dP

d

            = →         −−    

Z mapping derivationZ mapping derivation

Simultaneous equations?

?
1 0 1

A B z  
=  −  

Az B BA
z z
+ 

= − − − 

1

1

BA
n
BA
f

− + = −

− + = + 2

f nA
f n

fnB
f n

+
= −

−

= −
−

OutlineOutline

Orthographic projection (simpler)

Perspective projection, basic idea

Derivation of gluPerspective (handout: glFrustum)

Brief discussion of nonlinear mapping in z

Mapping of Z is nonlinearMapping of Z is nonlinear

Many mappings proposed: all have nonlinearities

Advantage: handles range of depths (10cm – 100m)

Disadvantage: depth resolution not uniform

More close to near plane, less further away

Common mistake: set near = 0, far = infty. Don’t do
this. Can’t set near = 0; lose depth resolution.

We discuss this more in review session

Az B BA
z z
+ 

= − − − 

6

Summary: The Whole Viewing PipelineSummary: The Whole Viewing Pipeline

Model
transformation

Camera
Transformation

(gluLookAt)

Perspective
Transformation
(gluPerspective)

Viewport
transformation

Raster
transformation

Model coordinates

World coordinates

Eye coordinates

Screen coordinates

Window coordinates

Device coordinates

Slide courtesy Greg Humphreys

