
1

Computer Graphics (Fall 2006)Computer Graphics (Fall 2006)

COMS 4160, Lecture 16: Illumination and Shading 1
http://www.cs.columbia.edu/~cs4160

To DoTo Do

Work on HW 3, do well

Start early on HW 4

Discussion of midterm
But remember HW 3, HW 4 more important

Course OutlineCourse Outline

3D Graphics Pipeline

Rendering
(Creating, shading images from
geometry, lighting, materials)

Modeling
(Creating 3D Geometry)

Course OutlineCourse Outline

3D Graphics Pipeline

Rendering
(Creating, shading images from
geometry, lighting, materials)

Modeling
(Creating 3D Geometry)

Unit 1: Transformations
Weeks 1,2. Ass 1 due Sep 21

Unit 2: Spline Curves
Weeks 3,4. Ass 2 due Oct 5

Unit 3: OpenGL
Weeks 5-7.
Ass 3 due Nov 9

Midterm on units 1-3: Oct 25

Unit 4: Lighting, Shading
Weeks 8,9.
Written Ass 1 due Nov 15

Ass 4: Interactive 3D Video Game (final project) due Dec 12

Rendering: 1960s (visibility)Rendering: 1960s (visibility)
Roberts (1963), Appel (1967) - hidden-line algorithms
Warnock (1969), Watkins (1970) - hidden-surface
Sutherland (1974) - visibility = sorting

Images from FvDFH, Pixar’s Shutterbug
Slide ideas for history of Rendering courtesy Marc Levoy

1970s - raster graphics
Gouraud (1971) - diffuse lighting, Phong (1974) - specular lighting
Blinn (1974) - curved surfaces, texture
Catmull (1974) - Z-buffer hidden-surface algorithm

Rendering: 1970s (lighting)Rendering: 1970s (lighting)

2

Rendering (1980s, 90s: Global Illumination)Rendering (1980s, 90s: Global Illumination)

early 1980s - global illumination
Whitted (1980) - ray tracing
Goral, Torrance et al. (1984) radiosity
Kajiya (1986) - the rendering equation

OutlineOutline

Preliminaries

Basic diffuse and Phong shading

Gouraud, Phong interpolation, smooth shading

Formal reflection equation (next lecture)

Texture mapping (in one week)

Global illumination (next unit)

For today’s lecture, slides and chapter 9 in textbook

MotivationMotivation

Objects not flat color, perceive shape with appearance

Materials interact with lighting

Compute correct shading pattern based on lighting
This is not the same as shadows (separate topic)

Some of today’s lecture review of last OpenGL lec.
Idea is to discuss illumination, shading independ. OpenGL

Today, initial hacks (1970-1980)
Next lecture: formal notation and physics

Linear Relationship of LightLinear Relationship of Light

Light energy is simply sum of all contributions

Terms can be calculated separately and later added
together:

multiple light sources
multiple interactions (diffuse, specular, more later)
multiple colors (R-G-B, or per wavelength)

∑= k kII

General ConsiderationsGeneral Considerations
Surfaces are described as having a position, and a normal at

every point.

Other vectors used
L = vector to the light source

light position minus surface point position
E = vector to the viewer (eye)

viewer position minus surface point position

(x1,y1,z1)

N1

(x2,y2,z2)

N2

Diffuse Diffuse LambertianLambertian TermTerm

Rough matte (technically Lambertian) surfaces
Not shiny: matte paint, unfinished wood, paper, …

Light reflects equally in all directions

Obey Lambert’s cosine law
Not exactly obeyed by real materials

I N L•∼N-L

3

Meaning of negative dot productsMeaning of negative dot products
If (N dot L) is negative, then the light is behind the surface,
and cannot illuminate it.

If (N dot E) is negative, then the viewer is looking at the
underside of the surface and cannot see it’s front-face.

In both cases, I is clamped to Zero.

PhongPhong Illumination ModelIllumination Model

Specular or glossy materials: highlights
Polished floors, glossy paint, whiteboards
For plastics highlight is color of light source (not object)
For metals, highlight depends on surface color

Really, (blurred) reflections of light source

Roughness

Idea of Idea of PhongPhong IlluminationIllumination

Find a simple way to create highlights that are view-
dependent and happen at about the right place

Not physically based

Use dot product (cosine) of eye and reflection of light
direction about surface normal

Alternatively, dot product of half angle and normal

Raise cosine lobe to some power to control sharpness
or roughness

PhongPhong FormulaFormula

-L
R

E

() pI R E∼ i

?R = 2()R L L N N= − + i

Alternative: HalfAlternative: Half--Angle (Angle (BlinnBlinn--PhongPhong))

In practice, both diffuse and specular components for
most materials

HN

() pI N H∼ i

OutlineOutline

Preliminaries

Basic diffuse and Phong shading

Gouraud, Phong interpolation, smooth shading

Formal reflection equation (next lecture)

Texture mapping (in one week)

Global illumination (next unit)

Not in text. If interested, look at FvDFH pp 736-738

4

Triangle Meshes as ApproximationsTriangle Meshes as Approximations

Most geometric models are large collections of
triangles.

Triangles have 3 vertices, each with a position, color,
normal, and other parameters (such as n for Phong
reflection).

The triangles are an approximation to the actual
surface of the object.

Vertex ShadingVertex Shading

We know how to calculate the light intensity given:
surface position
normal
viewer position
light source position (or direction)

2 ways for a vertex to get its normal:
given when the vertex is defined.
take all the normals from faces that share the vertex, and
average them.

Coloring Inside the PolygonColoring Inside the Polygon

How do we shade a triangle between it’s vertices,
where we aren’t given the normal?

Inter-vertex interpolation can be done in object space
(along the face), but it is simpler to do it in image
space (along the screen).

Flat vs. Flat vs. GouraudGouraud ShadingShading

Flat - Determine that each face has a single normal, and color the
entire face a single value, based on that normal.

Gouraud – Determine the color at each vertex, using the normal
at that vertex, and interpolate linearly for the pixels between
the vertex locations.

glShadeModel(GL_FLAT) glShadeModel(GL_SMOOTH)

GouraudGouraud Shading Shading –– DetailsDetails

Scan line

1I

2I

3I

1y

2y

3y

sy
aI bI

1 2 2 1

1 2

() ()s s
a

I y y I y yI
y y

− + −
=

−

1 3 3 1

1 3

() ()s s
b

I y y I y yI
y y

− + −
=

−

() ()a b p b p a
p

b a

I x x I x x
I

x x
− + −

=
−

pI

Actual implementation efficient: difference
equations while scan converting

GouraudGouraud and Errorsand Errors

I1 = 0 because (N dot E) is negative.

I2 = 0 because (N dot L) is negative.

Any interpolation of I1 and I2 will be 0.

I1 = 0 I2 = 0
area of desired

highlight

5

2 2 PhongsPhongs make a Highlightmake a Highlight

Besides the Phong Reflectance model (cosn), there is a Phong
Shading model.

Phong Shading: Instead of interpolating the intensities between
vertices, interpolate the normals.

The entire lighting calculation is performed for each pixel,
based on the interpolated normal. (OpenGL doesn’t do this,
but you can with current programmable shaders)

I1 = 0 I2 = 0

Problems with Interpolated ShadingProblems with Interpolated Shading

Silhouettes are still polygonal

Interpolation in screen, not object space: perspective distortion

Not rotation or orientation-independent

How to compute vertex normals for sharply curving surfaces?

But at end of day, polygons is mostly preferred to explicitly
representing curved objects like spline patches for rendering

