
1

Computer Graphics (Fall 2006)Computer Graphics (Fall 2006)

COMS 4160, Lecture 12: OpenGL 3
http://www.cs.columbia.edu/~cs4160

To DoTo Do

HW 3 Milestones due on Thu

If stuck, please get help from me or TAs

Important you feel confident you can finish HW 3

Programs in class, red book probably most help

Methodology for LectureMethodology for Lecture

Lecture deals with lighting (teapot shaded as in HW1)

Some Nate Robbins tutor demos in lecture

Briefly explain OpenGL color, lighting, shading

Demo 4160-opengl\opengl3\opengl3-orig.exe

Lecture corresponds chapter 5 (and some of 4)
But of course, better off doing rather than reading

Importance of LightingImportance of Lighting

Important to bring out 3D appearance (compare
teapot now to in previous demo)

Important for correct shading under lights

The way shading is done also important

glShadeModel(GL_FLAT) glShadeModel(GL_SMOOTH)

OutlineOutline

Basic ideas and preliminaries

Types of materials and shading
Ambient, Diffuse, Emissive, Specular

Source code

Moving light sources

Brief primer on ColorBrief primer on Color

Red, Green, Blue primary colors
Can be thought of as vertices of a color cube
R+G = Yellow, B+G = Cyan, B+R = Magenta,
R+G+B = White
Each color channel (R,G,B) treated separately

RGBA 32 bit mode (8 bits per channel) often used
A is for alpha for transparency if you need it

Colors normalized to 0 to 1 range in OpenGL
Often represented as 0 to 255 in terms of pixel intensities

Also, color index mode (not so important)

2

Shading ModelsShading Models

So far, lighting disabled: color explicit at each vertex

This lecture, enable lighting
Calculate color at each vertex (based on shading model,
lights and material properties of objects)
Rasterize and interpolate vertex colors at pixels

Flat shading: single color per polygon (one vertex)

Smooth shading: interpolate colors at vertices

Wireframe: glPolygonMode (GL_FRONT, GL_LINE)
Also, polygon offsets to superimpose wireframe
Hidden line elimination? (polygons in black…)

Demo and Color PlatesDemo and Color Plates

See OpenGL color plates 1-8

Demo: 4160-opengl\opengl3\opengl3-orig.exe

Question: Why is blue highlight jerky even with
smooth shading, while red highlight is smooth?

LightingLighting

Rest of this lecture considers lighting on vertices

In real world, complex lighting, materials interact

We study this more formally in next unit

OpenGL is a hack that efficiently captures some
qualitative lighting effects. But not physical

Modern programmable shaders allow arbitrary
lighting and shading models (not covered in class)

Types of Light SourcesTypes of Light Sources

Point
Position, Color [separate diffuse/specular]
Attenuation (quadratic model)

Directional (w=0, infinitely far away, no attenuation)

Spotlights
Spot exponent
Spot cutoff

All parameters: page 195 (should have already read HW1)

2

1

c l q

atten
k k d k d

=
+ +

Material PropertiesMaterial Properties

Need normals (to calculate how much diffuse,
specular, find reflected direction and so on)

Four terms: Ambient, Diffuse, Specular, Emissive

Specifying NormalsSpecifying Normals
Normals are specified through glNormal

Normals are associated with vertices

Specifying a normal sets the current normal
Remains unchanged until user alters it
Usual sequence: glNormal, glVertex, glNormal, glVertex, glNormal,
glVertex…

Usually, we want unit normals for shading
glEnable(GL_NORMALIZE)
This is slow – either normalize them yourself or don’t use glScale

Evaluators will generate normals for curved surfaces
Such as splines. GLUT does it automatically for teapot, cylinder,…

3

OutlineOutline

Basic ideas and preliminaries

Types of materials and shading
Ambient, Diffuse, Emissive, Specular

Source code

Moving light sources

LightMaterialLightMaterial DemoDemo

Emissive TermEmissive Term

materialI Emission=

Only relevant for light sources when looking directly at them
• Gotcha: must create geometry to actually see light
• Emission does not in itself affect other lighting calculations

Ambient TermAmbient Term

Hack to simulate multiple bounces, scattering of light

Assume light equally from all directions

Ambient TermAmbient Term

Associated with each light and overall light

E.g. skylight, with light from everywhere

0
* * *

n

global material light i material i
i

I ambient ambient ambient ambient atten
=

= +∑

Most effects per light involve linearly
combining effects of light sources

Diffuse TermDiffuse Term

Rough matte (technically Lambertian) surfaces

Light reflects equally in all directions

I N L•∼N-L

4

Diffuse TermDiffuse Term

Rough matte (technically Lambertian) surfaces

Light reflects equally in all directions

Why is diffuse of light diff from ambient, specular?

I N L•∼N-L

0
* * *[max (,0)]

n

light i material i
i

I diffuse diffuse atten L N
=

=∑ i

SpecularSpecular TermTerm

Glossy objects, specular reflections

Light reflects close to mirror direction

SpecularSpecular TermTerm

Glossy objects, specular reflections

Light reflects close to mirror direction

Consider half-angle between light and viewer
sN

0
* * *[max (,0)]

n
shininess

light i material i
i

I specular specular atten N s
=

= •∑

DemoDemo

What happens when we make surface less shiny?

What happens to jerkiness of highlights?

OutlineOutline

Basic ideas and preliminaries

Types of materials and shading
Ambient, Diffuse, Emissive, Specular

Source code

Moving light sources

Source Code (in display)Source Code (in display)
/* New for Demo 3; add lighting effects */
/* See hw1 and the red book (chapter 5) for details */
{
GLfloat one[] = {1, 1, 1, 1};
// GLfloat small[] = {0.2, 0.2, 0.2, 1};
GLfloat medium[] = {0.5, 0.5, 0.5, 1};
GLfloat small[] = {0.2, 0.2, 0.2, 1};
GLfloat high[] = {100};
GLfloat light_specular[] = {1, 0.5, 0, 1};
GLfloat light_specular1[] = {0, 0.5, 1, 1};
GLfloat light_position[] = {0.5, 0, 0, 1};
GLfloat light_position1[] = {0, -0.5, 0, 1};

/* Set Material properties for the teapot */
glMaterialfv(GL_FRONT, GL_AMBIENT, one);
glMaterialfv(GL_FRONT, GL_SPECULAR, one);
glMaterialfv(GL_FRONT, GL_DIFFUSE, medium);
glMaterialfv(GL_FRONT, GL_SHININESS, high);

5

Source Code (Source Code (contdcontd))
/* Set up point lights, Light 0 and Light 1 */
/* Note that the other parameters are default values */

glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_DIFFUSE, small);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

glLightfv(GL_LIGHT1, GL_SPECULAR, light_specular1);
glLightfv(GL_LIGHT1, GL_DIFFUSE, medium);
glLightfv(GL_LIGHT1, GL_POSITION, light_position1);

/* Enable and Disable everything around the teapot */
/* Generally, we would also need to define normals etc. */
/* But glut already does this for us */

glEnable(GL_LIGHTING) ;
glEnable(GL_LIGHT0) ;
glEnable(GL_LIGHT1) ;
if (smooth) glShadeModel(GL_SMOOTH) ; else glShadeModel(GL_FLAT)
}

OutlineOutline

Basic ideas and preliminaries

Types of materials and shading
Ambient, Diffuse, Emissive, Specular

Source code

Moving light sources

Moving a Light SourceMoving a Light Source

Lights transform like other geometry

Only modelview matrix (not projection). The only
real application where the distinction is important

See types of light motion pages 202-
Stationary light: set the transforms to identity before
specifying it

Moving light: Push Matrix, move light, Pop Matrix

Moving light source with viewpoint (attached to camera).
Can simply set light to 0 0 0 so origin wrt eye coords (make
modelview matrix identity before doing this)

LightpositionLightposition demodemo

