To Do

Computer Graphics (Fall 2006)

Start working on HW 3. Milestones due in 1 week.

COMS 4160, Lecture 11: OpenGL 2 Can leverage many sources (Red book, excellent

online documentation, see links class website
http://www.cs.columbia.edu/~cs4160)

And programs shown in class (try reading, compiling,
understanding source code)

It is a good idea to copy (and modify) relevant
segments

(Very) tough to get started, but lots of fun afterwards

Methodology for Lecture Outline

Make demo from last lecture more ambitious Review of demo from last lecture
Questions on some changes and potential problems Display lists (extend init for pillars)
I will run through sequence of steps with demos Matrix stacks and transforms (draw 4 pillars)
Demo Depth testing or z-buffering
Animation (moving teapot)

Texture mapping (wooden floor)

Best source for OpenGL is the redbook (in this lecture, chapters 3, 7 and
early part of 9) . Of course, this is more a reference manual than a
textbook, and you are better off implementing rather reading end to end.
Though if you do have time, the book is actually quite readable

Review of Last Demo Immediate vs. Retained Mode

Changed floor to all white, added global for display Immediate Mode

lists (talked about next) and included some new files Primitives sent to display as soon as specified (default)
Graphics system has no memory of drawn primitives
Demo 0 (in Visual Studio)

Retained Mode

Primitives placed in display lists
#include <GL/glut.h> . Display lists can be kept on the graphics server
#include <stdio.h> // ** NEW ** for loading the texture . 2 g 2
#include <stdlib.h> Can be redisplayed with different graphics state

#include <assert.h> // ** NEW ** for errors Almost always a performance win

int mouseoldx, mouseoldy ; // For mouse motion
GLdouble eyeloc = 2.0 ; // Where to look from; initially 0 -2, 2
GLuint pillar ; // ** NEW ** For the display list for the pillars

We will add 4 pillars using a display list for a single
pillar, with changed attributes (transform, color)

Display List Initialization (in init)

Outline

This uses gluCylinder. The glu primitives are

sometimes useful.

The GLU library is described in chapter 11. We need only
a small part of it.

cyl = gluNewQuadric() ;

/* This part sets up a display list for the pillars.
Refer to chapter 7 for more details */

pillar = glGenLists(1l) ;

glNewList (pillar, GL_COMPILE) ;
gluCylinder (cyl, 0.1, 0.1, .5, 10, 10) ;
glEndList() ;

Review of demo from last lecture

Display lists (extend init for pillars)

Matrix stacks and transforms (draw 4 pillars)
Depth testing or z-buffering

Animation (moving teapot)

Texture mapping (wooden floor)

Red Book, Chapter 3

Summary OpenGL Vertex Transforms

Transformations

Object coords Clip coordinates | pergpective Divide

(x y zw)! vertex (Dehomogenization)

l Normalized Device
Coordinates

Modelview matrix
[Object Transforms Viewport Transform
and gluLookAt] (glViewport)

Eye coordinates
(used for lighting)

Projection matrix Window Coords

[3D to 2D, usually
gluPerspective]

Matrix Stacks
glPushMatrix, glPopMatrix, glLoad, glMultMatrix{
Useful for Hierarchically defined figures, placing pillars

Transforms
glTranslatef(x,y,z) ; glRotatef(0,x,y,z) ; glScalef(x,y,z)
Right-multiply current matrix (last is first applied)

Also gluLookAt, gluPerspective
Remember gluLookAt just matrix like any other transform,
affecting modelview
Must come before in code, after in action to other transfs
Why not usually an issue for gluPerspective?

Complete Viewing Example

Drawing Pillars 1 (in display)

//Projection first (order doesn’t matter)
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;

gluPerspective(60, 1, 1, 100);

//Now object transformations
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity() ;

gluLookAt(10, 10, 10, 1, 2,
glTranslatef(1, 1, 1);
glRotatef(90, 1, 0, 0);
DrawObject () ;

/* Note the use of matrix stacks and push and pop */
glMatrixMode (GL_MODELVIEW) ;

/* Draw first pillar by Translating */

glPushMatrix() ;
glTranslatef (0.4, 0.4, 0.0) ;
glColor3£(1.0, 1.0, 0.0) ;
glCallList(pillar) ;

glPopMatrix () ;

/* Draw second pillar by Translating */

glPushMatrix () ;
glTranslatef(-0.4, 0.4, 0.0) ;
glColor3£(1.0, 0.0, 0.0) ;
glCallList (pillar) ;

glPopMatrix () ;

Drawing Pillars 2

/* Draw third pillar by Translating */
glPushMatrix () ;
glTranslatef(-0.4, -0.4, 0.0) ;
glColoxr3£(0.0, 1.0, 0.0) ;
glCalllList(pillar) ;
glPopMatrix () ;

/* Draw fourth pillar by Translating */

glPushMatrix() ;
glTranslatef (0.4, -0.4, 0.0) ;
glColor3£(0.0, 0.0, 1.0) ;
glCallList(pillar) ;

glPopMatrix () ;

Demo

Outline

Demo 1 (in visual studio)
Does order of drawing matter?
What if I move floor after pillars in code?

Is this desirable? If not, what can I do about it?

Review of demo from last lecture
Display lists (extend init for pillars)

Matrix stacks and transforms (draw 4 pillars)

Depth testing or z-buffering (state management too)

Animation (moving teapot)

Texture mapping (wooden floor)

State

Turning on Depth test (Z-buffer)

OpenGL is a big state machine

State encapsulates control for operations like:
Lighting
Shading
Texture Mapping
Depth testing

Boolean state settings can be turned on and off with
and

Anything that can be set can be queried using

OpenGL uses a Z-buffer for depth tests
For each pixel, store nearest Z value (to camera) so far
If new fragment is closer, it replaces old z, color
Simple technique to get accurate visibility
(Be sure you know what fragments and pixels are)

Changes in main fn, display to Z-buffer

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH) ;

glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT) ;

In init function

glEnable (GL_DEPTH_TEST) ;
glDepthFunc (GL_LESS) ; // The default option

Demo

Demo 2 (in visual studio)
Does order of drawing matter any more?
What if I change near plane to 0?

Is this desirable? If not, what can I do about it?

Outline

Review of demo from last lecture

Display lists (extend init for pillars)

Matrix stacks and transforms (draw 4 pillars)
Depth testing or z-buffering

Animation (moving teapot)

Texture mapping (wooden floor)

Demo

Drawing Teapot (in display)

Demo 3 (in visual studio)
Notice how teapot cycles around
And that I can pause and restart animation

And do everything else (zoom etc.) while teapot
moves in background

GLdouble teapotloc

/*

= -0.5 ; // global variable set before
** NEW ** Put a teapot in the middle that animates */
glColor3£(0.0,1.0,1.0) ;

glPushMatrix() ;

/* I now transform by the teapot translation for animation

glTranslatef (teapotloc, 0.0, 0.0) ;

/* The following two transforms set up and center the

teapot */

/* Remember that transforms right-multiply the stack */

glTranslatef(0.0,0.0,0.1) ;
glRotatef(90.0,1.0,0.0,0.0) ;
glutSolidTeapot (0.15) ;
glPopMatrix () ;

Simple Animation routine

Keyboard callback (p to pause)

void animation (void) {
teapotloc = teapotloc + 0.005 ;
if (teapotloc > 0.5) teapotloc = -0.5 ;
glutPostRedisplay() ;

}

GLint animate = 0 ; // ** NEW ** whether to animate or not

void keyboard (unsigned char key, int x, int y)

{

}

s
c;

c;

d

}

witch (key) {
ase 27: // Escape to quit
exit(0) ;
break ;
ase 'p': // ** NEW ** to pause/restart animation
animate = !animate ;
if (animate) glutIdleFunc(animation) ;
else glutIdleFunc (NULL)
break ;
efault:
break ;

Double Buffering

New primitives draw over (replace) old objects

Can lead to jerky sensation

Solution: double buffer. Render into back (offscreen)
buffer. When finished, swap buffers to display entire

image at once.

Changes in main and display

glutInitDisplayMode (GLUT DOUBLE | GLUT_RGB | GLUT_DEPTH) ;

glutSwapBuffers() ;
glFlush ();

Outline

Texture Mapping

Review of demo from last lecture

Display lists (extend init for pillars)

Matrix stacks and transforms (draw 4 pillars)
Depth testing or z-buffering

Animation (moving teapot)

Texture mapping (wooden floor)

Initial part of GL chapter 9, Demo 4

Textures are images applied to objects

Texture modifies the color assignment to a fragment
Texture color can modify the material color used in the
shading model, or it can be a decal

Use to assign a texture coordinate to a
vertex

Texture Mapping Example

Specifying the Texture Image

glBegin(GL_QUADS) ;
glTexCoord2f(0, 0);
glVertex3f(a, b, c);
glTexCoord2£f(1, 0);
glvertex3f(a, b, d);
glTexCoord2£(1, 1);
glvVertex3f(a, e, d);
glTexCoord2f(0, 1);
glvVertex3f(a, e, c);

glEnd() ;

glTexImage2D(target, level, components, width height,
border, format, type, data)

target is GL_ TEXTURE_2D

level is (almost always) 0

components = 3 or 4 (RGB/RGBA)

width/height MUST be a power of 2

border = 0 (usually)

format = GL_RGB or GL_RGBA (usually)

type = GL_UNSIGNED_BYTE, GL_FLOAT, etc...

More on Texture (very briefly)

Setting up texture (in init)

Optimizations for efficiency
Mipmapping

Filtering

Texture Coordinate generation
Texture Matrix

Environment Mapping

If very ambitious, read all of chapter 9

/* ** New for demo 2 ** setup for textures */

/* First, read this simple ppm file in */
assert (fp = fopen("wood.ppm","rb")) ;
fscanf (fp,"%*s %*d %$*d $*d%*c") ;
for (i =0 ; i < 256 ; i++)

for (3 = 0 ; j < 256 ; j++)

for (k = 0 ; k < 3 ; k++)
fscanf (fp, "%c", & (woodtexture[i] [j]1[k])) ;

fclose (£p) ;

/* Now, set up all the stuff for texturing, per red book */

gl tures (1,) i

glBindTexture (GL_TEXTURE 2D, texName) ;

glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE_WRAP_S, GL_REPEAT) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP_T, GL REPEAT) ;
glTexParameteri (GL_TEXTURE 2D, GL_TEXTURE_MAG FILTER, GL NEAREST) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE MIN FILTER, GL_NEAREST) ;

glTexImage2D (GL_TEXTURE_2D,0,GL_RGB, 256, 256, 0, GL_RGB,

GL_UNSIGNED_BYTE, woodtexture) ;

Rendering with texture (in display)

/* As a final step, I modify this for texture mapping * NEW * */
/* Consult chapter 9 for the explanation of the various options */
/* Note addition of texture coordinates, and the glue to add

texturing */
/* Also note some effort to find the error if any */

glEnable (GL_TEXTURE_2D) ;
glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE ENV_MODE, GL REPLACE) ;
glBindTexture (GL_TEXTURE_2D, texName) ;
glColor3£(1.0,1.0,1.0) ;
err = glGetError() ; assert(err == GL_NO_ERROR)
glBegin (GL_POLYGON) ;
glTexCoord2£(1.0, 1.0) ; glvVertex3f (0.5,
glTexCoord2£(0.0,1.0) glVertex3f (-0.5,
glTexCoord2£(0.0,0.0); glVertex3f (-0.5,
glTexCoord2£(1.0,0.0) ; glVertex3f (0.5,
glEnd() ;
err = glGetError() ; assert(err == GL_NO_ERROR)
glDisable (GL_TEXTURE 2D) ;

