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Polar forms simplify

the construction of
polynomial and
piecewise-polynomial
curves and surfaces and
lead to new surface
representations and
algorithms.

Apicture can best explain the main idea behind polar
forms. In Figure 1, I show a cubic Bezier curve F over
the unit interval [0, 1] with its Bezier points and all the inter-
mediate points that came up while I used the de Casteljau
Algorithm to evaluate the curve at a parameter t. What’s new
in this figure is the labeling scheme. While most standard texts
use labels like b]'- for the de Casteljau Algorithm’s intermedi-
ate points, the labels in Figure 1 are of the form f( -, -, -)
where fis the polar form of the polynomial F. Since F is of de-
gree three, its polar form has three arguments. Furthermore,
the polar form is symmetric; you can write its three arguments
in any order without changing the value of f, and f is related
to F by the identity F(u) = f(u, u, u). Finally, the labels reflect
the incidence structure of the points and lines in Figure 1: All
points whose labels share at least two arguments lie on the
same line. The exact position of a point on this line is deter-
mined by the remaining third label: As f moves with constant
speed between 0 and 1, the point f(0, 1, 1), for example, moves
with constant speed between f(0, 0, 1) and f(0, 1, 1). The point
f(0, ¢, 1) lies ¢ of the way from f(0, 0, 1) to f(0, 1, 1). Moving on
a line with constant speed means that the polar form is affine
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in each argument, or simply multiaffine. Thus the polar form f
of a cubic polynomial curve F is a symmetric triaffine map
that satisfies F(u) = f(u, u, u).

The above properties let us reconstruct the point F(¢) from
the Bezier points f(0, 0, 0), f(0, 0, 1), f(0, 1, 1), and (1, 1, 1) as
follows: First we interpolate linearly along the edges of the
control polygon to get the points f(0, 0, 1), (0, ¢, 1), and f(z, 1,
1). Then we interpolate linearly between these points to get
(0, 0, £) and f{(z, ¢, 1). Finally, the last step of interpolation be-
tween these two points yields the point F(¢) = f(1, ¢, £) on the

Figure 1. A cubic Bezier curve and the de Casteljau Algorithm.
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curve. This is exactly what the de Casteljau Algorithm is
(we’ll return to this algorithm later).
See the sidebar for a brief review of polar forms.

Polar form of polynomial curves

Let’s generalize our introductory discussion from cubics to
polynomial curves of arbitrary degree. In partlcular I want to
establish the so-called Blossoming Prmczple that essentially
states that every polynomial has a unique polar form.

First we need a little bit of notation. Recall that a map f: IR
— R is affine if it preserves affine combinations, that is, if f
satisfies f(Z; oy;) = Z; oy f(wy) for all scalars o, . . ., o, € R
with Z; o, = 1. A map f: R' > R is n-affine (or just multi-
affine) if it is an affine map in each argument when the others
are held fixed. Thus fis multiaffine if

[ul, Z%uz . J:Zog f(u],..,,u,‘],“.‘u")
/

,nand o, .. ., 0, € IR with £, o, = 1. Finally, f:
R" — R'is called symmetric if it keeps its values under any
permutation of its arguments.

We can extend the domain of a symmetric multiaffine map
f to vectors: Let i, = w; — v; be a vector. We can then define

foralli=1,...

fluy, .oty &1, . iq) recursively as
fltr ot B B = fltie oty o 6
_f(ul* s Uy V) E_,z, > E:q)

Note that this definition is in fact well-defined. That is, it only
depends on the vectors %,, not on their starting or end points
w; and v,. With this notatlon in place, we can now state the
Blossoming Principle. 3

Blossoming Principle

Polynomials F : IR — IR’ of degree n and symmetric muiti-
affine maps f: (IR)" — IR' are equivalent to each other. In par-
ticular, given a map of either type, we know there is a unique
map of the other type that satisfies the identity F(u) = f(ut. . . .,
u). In this situation f is called the multiaffine polar form or
blossom of F, while F is called the diagonal of f. Furthermore,
the gth derivative of Fis given as

F'u)= i N §))
(n q)‘ ( )
-4
where 1= 1 -0 e [Ris the standard unit vector and f(u, . . . , u,
1,...,1)is defined as above.
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A brief history of polar forms

Polar forms are a classical mathematical tool for the study of
polynomials. Paul de Faget de Casteljau first considered them in
the context of computer graphics and computer-aided geomet-
ric design in his work at Citroen,"? and Lyle Ramshaw studied
them while at Xerox Palo Alto Research Center.>* In his original
work, de Casteljau focused on Bezier curves and triangular
Bezier patches, and especially on constructing quasi-inter-
polantsA6 Ramshaw’s treatment of polar forms is much more al-
gebraic and uses techniques like homogenizing and tensoring.

More recently, various researchers have expanded and ap-
plied the polar approach. In my own research, | applied polar
forms directly to the B-spline blending functions and gave a
simple development of B-splines from scratch.” 1 also discussed
the relationship between polar forms and knot insertion. P.J.
Barry and R.N. Goldman®? related polar forms to other B-spline
approaches, and they also used polar forms for a thorough dis-
cu55|on of knot insertion for B-splines. E.T.Y. Lee' and K.
Strom'? also contributed to this area. In other research, | used
the geometry behind polar forms to extend them to geometri-
cally continuous spline curves,'? and G. Schmeltz extended this
geometric approach to surfaces.” T. DeRose and others used
polar forms as an abstract data type, the basis of a software li-
brary.14 Among other things, they used these forms for curva-
ture computations and for composing polynomials.

Polar forms have also been helpful in developing new surface
schemes. In earlier research, 1 introduced the B-patch, a surface
representation that we can think of as the analog to a B-spline
segment for surfaces.'® More recently, W. Dahmen, C.A. Mic-
chelli, and I'® combined B-patches with simplex splines and de-
veloped a surface scheme that lets us model smooth ptecewme
polynomial surfaces over arbitrary triangulations. P. Fong'” has
produced a first implementation of this scheme.

Explicit formulas for the polar form f become particularly
simple for monomials

F(u):iaiuf
i=0

In this case the polar form fis given by the formula

-1
flu =37 3 T
i=0 Scil...n) jeS
|s|=i

and the coefficients a; satisfy

p— n 1 1
_[q] f(u,l,...,l)

n—-q q

_ F@ (0)
q

For the cubic polynomial

39



Computer-Aided Geometric Design

> 3
F(u) = ag+ au + agd + asu

we get, for example,
fluguguz)=

a a
a, +—3—‘(u1 +u, +u3)+?2(ulu2 Uyl LU )+ AU

A coordinate-free formula for the polar form is’

1 .
flyea)== 3, (—D""i"F[iZu,]
n Sc(l...n} t jes

.S‘=1
Now let’s consider the continuity conditions between (wo
polynomials in terms of polar forms. Essentially, by rephras-
ing Equation 1, we get the Theorem for C? Conditions.

Theorem for C? Conditions

Let F: R— IR'and G : R— R’ be two polynomials of de-
gree n, and let « € IR. Then the following two statements are
equivalent:

e Fand G are C?-continuous at u.

o fltdy. ottty ) =8 U
u, € R.

wug) forug, ...,

Bezier curves

Why are polar forms useful? Polar forms simplify the the-
ory of Bezier curves and B-splines to such a state that most
results become almost trivial. Let’s consider a polynomial
curve F: R—> IR'". Suppose we wish to represent F'as a Bezier
curve over some given interval A = [r, s]. What are the Bezier
points? Writing  as an affine combination of r and s,

s—u_ u-r

r+
s=r s—=r

u= s
we get

s—

F(u)= f(u,....u)= s—l: f(u....,u,r)+%:—::f(u,.,.,u.s)

=(Siu)_f(u,....u,r,r)+ZEugr)[s——ﬁ] flu...ur.s)
s s—r)\s—r

2
+ (u —r) flu,...,u,s,s)

sS—=r

= Z})Bﬁ"‘(u) f(r...“,r,s,‘..,s)

n—j j
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where

i n-j
An aY(u—r\{s—u .
B =\"\|—||~ Lj=0,...,n
ji\s=r)\s—r

are the Bernstein polynomials with regard to A = [r, s). Thus
we have the Theorem for Bezier Points.”

Theorem for Bezier Points

Let A = [r. s] be an arbitrary interval. We can represent ev-
ery polynomial F: R— R' as a Bezier polynomial with regard
to A. The Bezier points are given as

b/ :f(r,...r,r.s....,s) @

n-j j

where fis the polar form of F.
Equation 2 immediately leads to an evaluation algorithm
that recursively computes the value

bj(u): f(r,....r,u‘.,.‘u,x v)

n-l-j ! i

S—Uu
= f(r....‘r.u..”.n.su...s
o e

)+ (e

s—r "’ r
neimjrl i i n-l-j -1 jl
S—U gy u—r ;|
= b’ (u)+ bi(u)
s=r s—r

from the given control points. For [ = n. we finally compute
b (1) = f(u, . . . . u) = F(u), which is the desired point on the
curve. Figures 2 and 3 illustrate the resulting computational
scheme. Paul de Faget de Casteljau first studied this algo-
rithm. and thus it's called the de Casteljau Algorithm.“2
Equation 2 also shows that the de Casteljau Algorithm of-
fers much more than just evaluation. Suppose that we want to
subdivide a Bezier curve F over a given interval A = [s. ¢} atan
arbitrary parameter u € A. What are the new Bezier points of
the left and right segments F,and F, with respect to the subin-

f(r,r,5) f(r.u,s)

f(r.$,9)

f(r.r,u) £(0,5.9)

F(s) = f(5.,5,5)
f(r.nr) = F(r)

Figure 2. The de Casteljau Algorithm for the case n = 3.

IEEE Computer Graphics & Applications



r f(u,uu)

s-u
S—r
u-r
S—r
f(ruu) f(u,u,8)
s-u 5=y
S—r S—r
u-r u=r
S-r S—r
f(r,u.s) f(1,5,8)

it
i\

i
/
()

i)

~is
i
L
~I=

1(s,,5) J

tervals A, = [r, 4] and A, = [u, 5]? Equation 2 tells us that the
new Bezier points after subdivision are given as

bl = e bl = fr )by = 1)
and
by =fQu, ... u),b]=flu, ... u.8)..... b, =f(s,.... s) (3)

Inspection shows that these points are automatically com-
puted during the de Casteljau Algorithm and are stored along
the left and right diagonals.

Finally, we can use a slight modification of the de Casteljau
Algorithm to compute arbitrary polar values f(i;, . . .. u,) by
recursively computing the values

bﬁ-(ul ..... u,)ff(r S U S s)

n-l-j 7 i

—u
. f(r St ,uH,s,...,s)
b A

s—=r

n—I-j+1 1-1 i

f(r S, u,_,,s,....s)
L e

n—l-j -1 j+i

L

s=r

S—Up gt u-r
:_—rbj Uyt ) ¥ —— s ]+1(”1 ‘‘‘‘‘ u,)

For [ = n, we finally compute by(u. . - -
This algorithm is called the Multiaffine de Casteljau Algorithm.
How about derivatives? After writing

iz—l—(s—r)
s—r

we find that Equation 1 implies
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Figure 3. The de Casteljau Algorithm for the case n = 3.

)= f(r....

F/(r) =~ {f(r... n)=—"(b,~by)

s=r
and similarly
nn=1)
(=1’
and so forth. These are the well-known derivative formulas
for Bezier curves.

Let me remark briefly on affine invariance. Let = ¢ © o Fbe
the image of F under an affine map (for example, translation,
scaling, rotation) ¢. The uniqueness part of the Blossommg
Principle implies that the polar formfof Fis given asf=0°f
It follows that the Bezier points b of Fsatisfy

Fr(r)= (b, —2b, +b;)

) =0 s ) = 0()
This means that the relationship between the curve F and its
Bezier control polygon is invariant under affine maps.

How can we extend the results of the preceding section
from Bezier curves to B-splines? We have seen that a polyno-
mial curve F and its polar form f is completely defined by its
Bezier pointsb; = f(r, ..., 7, s.....5). Let

FpS.. Sr<s <L S5,
be a nondecreasing sequence of real numbers. We wish to
show that F can be equally well defined by its de Boor points
d,=fri..... Fujs Sto -+ -+ 5p)- SINCE £; # 5, We can express u as
an affine combination w1th regard to r;and s;,

S;‘ —U N u— rl.

Ti
s s;=r

u= f/

and by successively expanding

d{,.(u):f(rl....,r,‘,,f,,u ..... TR

Sipi—HU -
—V—]df(rlﬁ”“rr

1]

1—17)‘+1’Mw-~-vu»s]~~-ysj)
[ A

w—r,
n-1—j+1 .
I eSS )
S T Tt jl

S —u It U—Ty, i
S B T (M)Jrs_‘"L L)

Sj+17rn-[7j+1 2+l ~laei-jr1

we see that F(u) = dg(u) is in fact completely determined by
the points d; = f(ry, . . .. ).
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f(ry.1,54)

f(ry.05,8¢)

F(u)=

f(u,u,u)

f(ry,05.05) |
\ |
£(84,55,53)
Conversely, suppose that the points d; = f{ry, ... . F,js Spe - - - 5))

are given. We can then use the above recurrence to evaluate the
curve F at an arbitrary parameter value u. Inspection shows that
the resulting algorithm is identical to the de Boor Algorithm for
the evaluation of a B-spline segment from its endpoints. We thus
have the following theorem.**

Theorem for de Boor Points
We can represent every polynomial F: R — R' as a B-
spline segment over a nondecreasing knot sequence r, <. . . <
r <s; <...<s, The de Boor points are given as

dj:f(rlﬂ'"’rn—jﬁslﬂ"‘ﬂsj) (4)

where f is the polar form of F.

1 illustrate this theorem and the de Boor Algorithm itself in
Figures 4 and 5. Again, we can use the multiaffine version of
the algorithm to compute arbitrary polar values fluy. ..., w,)
from the given control points.

f(u,u,u)
S‘—U
5T,
171
u-=r
=N
f(u,u,8y)
S-u
51
u- f1
=1
f(ry,00) (ry,u.81) £(1,,,,)
S -u Sy
50 Sp=l 53"1
U—I’3 u— f’j
575 52“’2 S3=hy
f(rrn)  1(.0.8) £(r,80.8)  1(5;,5.53)

Figure 5. The de Boor Algorithm for a cubic B-spline segment.
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Figure 4. The de Boor Algorithm for the case n = 3.

Even more important than evaluation is knot insertion.
Suppose that the knot sequence 7, <. .. <r <s§ ... S5, is
given and that we want to insert a new knot ¢ w1th r<t<sy.
Equation 4 telis us that the new control points d after knot

insertion are glven as

d ‘f([ r17 o n] l’sl""’sj)
_ S 1
—v————f(rl,....r,,,,,sl,.”,s/)
S = uej
I-r,
- . .
I e 8)
sj+1_rn—j
_ Si ! d + [=r,; d.
! A
S r, S Y,

This is exactly what the Boehm Algorithm is. The Boehm Al-
gorithm is identical to the first step of the de Boor Algorithm.
Barry and Goldman have studied other knot insertion algo-
rithms (such as the Oslo Algorithm) in great detail. B8

Let’s briefly consider the miracle that B-spline curves are
C"“_continuous at a knot of multiplicity g. To keep our dis-
cussion as simple as possible, let’s ook at only the case where
{t}; is a sequence of simple knots. Let F; : [f;, fiy] —» R and
Fiop o [tians tia] = IR' be two adjacent B-spline segments that
join at the knot f,,. Since filti_pujsis - « -« lia)) = firtlipagers - -
4. forj=1.....n, successive expansion shows that

f;(tul-u

Then Equation 1 implies that F; and F;,, are in fact C""'-con-
tinuous at £,,. In Figure 6, 1 show the overlapping de Boor
schemes of two adjacent cubic B-spline segments.

Tensor product surfaces

By far the most popular surfaces in computer-aided geo-
metric design are tensor product surfaces. Given a curve
scheme F(u) = £y B{u)b, b; € IR', the corresponding tensor
product scheme is defined as

Flu,v)= i i B;(u) By(v) by,

i=0 j=0

b, € IR’

which we can also write as

» m
F(u,v)= ZB((u) b, with b; =b;(v) =Z B;(v) by
i=0 =0
This equation demonstrates that tensor product surfaces may
be considered as curves of curves. This equation also shows
that we first have to understand curves to understand tensor
product surfaces.

IEEE Computer Graphics & Applications
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f(u,u,u) g9(uuu)

s-u t-u

s—r t-s
u-r u-s
s—r i—s

f(u,u,5) ="g(s,u,u)

t-u pa]
s-u = X=s
s-q
u-q u-r u-s
s—q t=r X=§

L

u
f(q.ru) f(ru,s) = g(rsu) f(ust=g(sut)
t-u X=u y-u
S—u t-q X-r y-s
s-p
u-p u-q u-r
s-p t-q X—r
f(p.qn)  tgrs)=a(ans) trsh=g(rsh) f(stx)=g(stx)

Figure 6. Overlapping de Boor schemes for two
adjacent cubic B-spline segments

F:[r,s] > R"and G: s, {] - IR" over the
knot sequence ..., Ps g, > S L, X, ¥y o e v

d; = frp(Sits - - -

s Siend tj+'ls R t]+m)

You can then generalize many of the algo-
rithms I discussed earlier from Bezier and

g(ux) . . .
B-spline curves to Bezier and B-spline
tensor product surfaces.
s True surfaces

|

y-5 From now on, let’s discuss “true” sur-
a(txy) faces. We start with the Blossoming Princi-
ple, which generalizes almost word-by-word

Now let’s consider the polar form of a polynomial tensor
product surface. Let

F:RxRR— R:(u,v) Fu,v)

be a polynomial tensor product surface of degree n in u and
of degree m in v. To compute the corresponding polar form
frp of F we simply polarize both independent variables u and
v separately. The resulting map

frp iR XR™ > R : (1,5 Vs V)

B frplty, oo s Vis -2 Vi)

is then characterized by the following properties:

e Symmetry: frp is symmetric in the variables u; and v; sep-
arately. That is, we get

Frolg - s U Vi oo Vi) = frpltingiys - - » Uy Yoy - - - »
Vo(m))

for all permutationste £, andc € X,

« Multiaffine property: fr is affine in each of the variables
u; and v separately.

« Diagonal property: frp(tt, . .., UiV, s v) = F(u,v)

In generalizing the curve case, we find that the Bezier points b
of F in the representation F(u, v) = £y B} (u)B]'(v)b;; as a ten-
sor product Bezier surface over [p, q] x [r, s] are given as

b, = fT,,(p,...,p,q,...,q,r,...Tr,s,...,s)

n-i i m=j J

while the de Boor points d;; of Fin the representation F(u, v)
= TZN; ()N} (v)d,; as segment of a tensor product B-spline
surface over the knot vectors S = {s;} and T = {1} are given as
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from curves to surfaces.

Blossoming Principle for surfaces

Polynomials F: R® = R' of degree n and symmetric multi-
affine maps f : (IR*)" - IR' are equivalent to each other. In
particular, given a map of either type, we know that there is a
unique map of the other type that satisfies the identity F(u) =
f(u, ..., u). In this situation f is called the multiaffine polar
form or blossom of F, while F'is called the diagonal of f. Fur-
thermore, the qth directional derivative of F with respect to

vectors €, . . ., £, € IR is given as
n! 2 2
D; . in(u):W f(u,..,,u,il,‘..,éq) )
where f(u, ..., u, f;], RN 8,(,) is defined in a way similar to

the definition in Equation 1.

Again, things are particularly simple for monomials. For
example, for the quadratic polynomial

2 2
F(u) = ag) + Ayl + 8V + + Al + 21UV + 80V
we get

Ay

> (vy+v2)

a
flu,uy)=agy +—:;£(u1 Fuy)+

ay
+ayy Uil *‘2 (uyvy +uyv)+ag ViV,

The coordinate-free formula for the polar form becomes’

1 i g
f@pu) == ¥ (D) z"F[—.Eu,-]
noscfl...n ljes

|s}=i
and the continuity conditions translate into the C?-Conditions
Theorem for Surfaces.
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Figure 7. A cubic Bezier patch.

C%-Conditions
Theorem for Surfaces

let F: R* > R'and G: R* -
IR be two polynomials of degree 7,
and let u € R”. Then the following
statements are equivalent:

e Fand G are C’-continuous at u.

o flu,...,wmy,. . ) =g, ...,
wu, ... u)foru, ... ue
R.

Bezier triangles

The straightforward analog to Bezier curves are triangular
Bezier patches (see Figure 7). Consider a polynomial surface
F: IR* - IR". Suppose we want to represent F as a triangular
Bezier patch over some given domain triangle A = A(r, s, t).
Representing u € IR? in barycentric coordinates with regard
to A,

u = r(u)r + s(u)s + t{u)t, r+s+t=1

we get

F(u)= f(u,...,u)
=r(u) f(u,...,u,r)+s(u) f(u,...,u,s)
+1(u) f(u,...,u,t)

=3 Bﬁ{'(u) f(r,...,r,s,‘.‘,s,t,...,l)
~— e —— ——
i+j+k=n i i k

where

B! (w)= []k] ()’ s(u) r(u)*

are the Bernstein polynomials with regard to A = A(r, s, t). We
have thus shown the Theorem for Triangular Bezier Points.

Theorem for Triangular Bezier Points

Let A = A(r, s, t) be an arbitrary triangle. We can represent
every polynomial F': R’ - IR as a Bezier triangle with regard
to A. The Bezier points are given as

b =f(r,...,r,s,,.v.,s,t,..‘,t) (6)

j k

where fis the polar form of F.

44

Similar to the curve case, this theorem leads directly to the
de Casteljau Algorithm for evaluating, subdividing, and com-
puting the polar form. I illustrate the resulting computational
scheme in Figure 8. The well-known derivative formulas and
continuity conditions for Bezier triangles follow directly from
Equations 5 and 6. For & =s —r, for example, we get

D&F(l') =n(flr,....5,8)—f(r,....r,r) =n(b,; 1.0~ by 0.0)

Finally, affine invariance also follows in exactly the same way
as in the curve case.

B-patches

In the previous section, we saw that a polar form f is
uniquely defined by its values fir....,t,8...,8t. ..., t)on
the vertices of a triangle A = A(r, s, t). We can generalize this
definition by assigning a family of—usually different—knots
to each vertex of the triangle A. The resulting surface repre-
sentation is a B-patch.n'15

We say that A = {r, ..., %, Si, .-+ Sy by, - - o, B} is @ knot
arrangement if all triangles Ay = A(T;, §;, ;) are nondegener-
ate. In this situation, we can represent u in barycentric coordi-
nates with regard to A(r;, s;, t),

u = r(w)rg,, + s (u)s; + L (W, i+ S + =1

and by successively expanding

I
d,,k(u)=f(r,,...,r,,sl,...,s,,tl,...,tk.u,...,u)

=r @ AL S St el u)
+ S et ArL s S t,u,. .. )
+t1+1‘j+1.k+l(u)f(rlw e B S S,tl, e ’tk+l!uv e ‘u)

we see that F(u) = dyy(u) is in fact completely determined by

IEEE Computer Graphics & Applications



the points d . = f(ry, . . ., t,). We thus obtain the Theorem for
B-patch Control Points.

Theorem for B-patch Control Points
Let a knot arrangement A = {r;, . . ., t,} be given as above.
We can represent every polynomial F R* - R’ as a B-patch
over A with control points

dijk:f(rl,...,r,»,sl,.‘.,sj,tl,...,tk) ()

where fis the polar form of F.

This theorem shows that, for surfaces, B-patches are the
analog to B-spline curve segments. In particular, B-patches
have a de Boor-like evaluation algorithm that computes a
point F(u) on the surface from the given control points
through successive linear interpolation. Again, we can use the
multiaffine version of this algorithm to compute an arbitrary
polar value f(uy, . . ., u,). Figure 9 illustrates the resulting
computational scheme.

Triangular B-spline scheme

By combining B-patches and simplex splines, Dahmen,
Micchelli, and I recently developed a new multivariate B-
spline scheme.'” We based this surface scheme on blending
functions and control points. It lets you construct smooth
piecewise polynomial surfaces over arbitrary triangulations of
the parameter plane. I summarize some of the surface
scheme’s main features in the following theorem.

Introduction to Polar Forms

Theorem for Triangular B-splines

Let F(u) = Z,N,-’,-,‘(u)c,{jk be a triangular B-spline surface.
Then this surface has the following properties:

Piecewise polynomial: F(u) is a piecewise polynomial of

degree n.

Locality: Movement of a single control point cfjk influ-

ences only the surface on the triangle A(/) and on the tri-

angles directly surrounding A(/).

Convex hull property: F(u) lies inside the convex hull of

its control net.

¢ Smoothness: The surface F(u) is generically C"-contin-
uous everywhere.

¢ Affine invariance: The relationship between the surface

F and its control net is affinely invariant.

In a first implementation of this new surface scheme, we
successfully demonstrated the practical feasibility of the fun-
damental algorithms underlying the new scheme.'™"” With
this implementation, you can edit and manipulate quadratic
and cubic surfaces over arbitrary triangulations in real time.

For a surface scheme to be useful in practice, it must let you
represent as many surfaces as possible. The following result'””
is remarkable for just that reason.

We can represent any polynomial or piecewise polynomial
surface F with the new B-spline scheme. In this situation we
get the control points as

f(u,)

Figure 8. (Left) The de
Casteljau Algorithm for a

f(u,u)

quadratic Bezier patch.
Figure 9. (Right) The de
Boor Algorithm for a
quadratic B-patch.

f(rn f(rs) f(s.5) f(ry.0)

1(8;,5,)
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where f; is the polar form of the restriction of F to the trian-
gle A,
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