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Computer Graphics (Fall 2005)Computer Graphics (Fall 2005)

COMS 4160, Lecture 7: Curves 2
http://www.cs.columbia.edu/~cs4160

To DoTo Do

Start on HW 2 (cannot be done at last moment)
This (and previous) lecture should have all information need

Start thinking about partners for HW 3 and HW 4
Remember though, that HW2 is done individually
Your submission of HW 2 must include partner for HW 3

Outline of UnitOutline of Unit

Bezier curves (last time)

deCasteljau algorithm, explicit, matrix (last time)

Polar form labeling (blossoms)

B-spline curves

Not well covered in textbooks (especially as taught 
here).  Main reference will be lecture notes.  If you do 
want a printed ref, handouts from CAGD, Seidel

Idea of Blossoms/Polar FormsIdea of Blossoms/Polar Forms

(Optional) Labeling trick for control points and intermediate 
deCasteljau points that makes thing intuitive

E.g. quadratic Bezier curve F(u)
Define auxiliary function f(u1,u2) [number of args = degree]
Points on curve simply have u1=u2 so that F(u) = f(u,u)
And we can label control points and deCasteljau points not 
on curve with appropriate values of (u1,u2 )

f(0,0) = F(0) f(1,1) = F(1)

f(0,1)=f(1,0)

f(u,u) = F(u)

Idea of Blossoms/Polar FormsIdea of Blossoms/Polar Forms

Points on curve simply have u1=u2 so that F(u) = f(u,u)

f is symmetric f(0,1) = f(1,0)

Only interpolate linearly between points with one arg different
f(0,u) = (1-u) f(0,0) + u f(0,1)  Here, interpolate f(0,0) and f(0,1)=f(1,0)
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Geometric interpretation: Quadratic Geometric interpretation: Quadratic 
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Polar Forms: Cubic Bezier CurvePolar Forms: Cubic Bezier Curve
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Geometric Interpretation: Cubic
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Why Polar Forms?Why Polar Forms?
Simple mnemonic: which points to interpolate and how in 
deCasteljau algorithm

Easy to see how to subdivide Bezier curve (next) which is 
useful for drawing recursively

Generalizes to arbitrary spline curves (just label control 
points correctly instead of 00 01 11 for Bezier)

Easy for many analyses (beyond scope of course)

Subdividing Bezier CurvesSubdividing Bezier Curves
Drawing: Subdivide into halves (u = ½) Demo: hw2.exe

Recursively draw each piece
At some tolerance, draw control polygon
Trivial for Bezier curves (from deCasteljau algorithm): hence 
widely used for drawing

Why specific labels/ control points on left/right? 
How do they follow from deCasteljau? 
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Subdivision in Subdivision in deCasteljaudeCasteljau diagramdiagram
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Left part of Bezier curve
(000, 00u, 0uu, uuu)
Always left edge of 
deCasteljau pyramid

Right part of Bezier curve
(uuu, 1uu, 11u, 111)

Always right edge of 
deCasteljau pyramid

These (interior) points don’t 
appear in subdivided curves at all

Summary for HW 2Summary for HW 2

Bezier2 (Bezier discussed last time)

Given arbitrary degree Bezier curve, recursively subdivide 
for some levels, then draw control polygon hw2.exe
Generate deCasteljau diagram; recursively call a routine 
with left edge and right edge of this diagram

You are given some code structure; you essentially just 
need to compute appropriate control points for left, right 

DeCasteljauDeCasteljau: Recursive Subdivision: Recursive Subdivision

DeCasteljau (from last lecture) for midpoint

Followed by recursive calls using left, right parts

Outline of UnitOutline of Unit

Bezier curves (last time)

deCasteljau algorithm, explicit, matrix (last time)

Polar form labeling (blossoms)

B-spline curves

Not well covered in textbooks (especially as taught 
here).  Main reference will be lecture notes.  If you do 
want a printed ref, handouts from CAGD, Seidel

Bezier: DisadvantagesBezier: Disadvantages

Single piece, no local control (move a control point, 
whole curve changes) hw2.exe

Complex shapes: can be very high degree, difficult

In practice, combine many Bezier curve segments
But only position continuous at join since Bezier curves 
interpolate end-points (which match at segment 
boundaries)
Unpleasant derivative (slope) discontinuities at end-points
Can you see why this is an issue?

BB--SplinesSplines

Cubic B-splines have C2 continuity, local control

4 segments / control point, 4 control points/segment

Knots where two segments join: Knotvector

Knotvector uniform/non-uniform (we only consider 
uniform cubic B-splines, not general NURBS)

Knot: C2 continuity

deBoor points

Demo: hw2.exe
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Polar Forms: Cubic Polar Forms: Cubic BsplineBspline CurveCurve

-2 –1 0

–1 0 1 0 1 2

1 2 3

Labeling little different from in Bezier curve

No interpolation of end-points like in Bezier

Advantage of polar forms: easy to generalize

Uniform knot vector:
-2, -1, 0, 1, 2 ,3

Labels correspond to this

deCasteljaudeCasteljau: Cubic B: Cubic B--SplinesSplines

Easy to generalize using                                        
polar-form labels

Impossible remember                                             
without
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-2 -1 0 -1 0 1 0 1 2 1 2 3

-1 0 u 0 1 u 1 2 u

? ? ????

deCasteljaudeCasteljau: Cubic B: Cubic B--SplinesSplines

Easy to generalize using                                        
polar-form labels

Impossible remember                                             
without
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deCasteljaudeCasteljau: Cubic B: Cubic B--SplinesSplines

Easy to generalize using                                        
polar-form labels

Impossible remember                                             
without
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Explicit Formula (derive as exercise)Explicit Formula (derive as exercise)
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Summary of HW 2 Summary of HW 2 

BSpline Demo hw2.exe

Arbitrary number of control points / segments
Do nothing till 4 control points (see demo)
Number of segments = # cpts – 3 

Segment A will have control pts A,A+1,A+2,A+3

Evaluate Bspline for each segment using 4 control 
points (at some number of locations, connect lines)

Use either deCasteljau algorithm (like Bezier) or 
explicit form [matrix formula on previous slide]

Questions? 


