An Introduction to Polar Forms
Hans-Peter Seidel *

Universitat Erlangen, IMMD IX - Graphische Datenverarbeitung
Am Weichselgarten 9, D-8520 Erlangen

Abstract

Polar forms simplify the construction of polynomial and piecewise polynomial curves
and surfaces and lead to new surface representations and algorithms. This paper
provides an introduction to polar forms and shows how polar forms yield closed
form solutions to various recursive algorithms that are used in Computer Aided
Geometric Design. As a consequence, we obtain a simple new labeling scheme for
Bézier and B-spline curves and surfaces that allows us to label control points in a
consistent and meaningful way. The presentation concludes with a survey of some
recent new results that were obtained using polar forms.

1 Introduction

The main idea behind polar forms is best explained by a picture: Fig.1 shows a cubic
Bézier curve F over the unit interval [0, 1] together with its Bézier points and all the
intermediate points that come up during evaluation of the curve at a parameter ¢ using
the de Casteljau Algorithm. New in this figure is the labeling scheme. While most standard
texts use labels such as bg for the intermediate points of the de Casteljau Algorithm the
labels in Fig.1 are of the form f(-,-,-) where f is the polar form of the polynomial F'. Since
F'is of degree three, its polar form has three arguments. Furthermore, the polar form
is symmetric, i.e., its three arguments can be written in any order without changing the
value of f, and f is related to F' by the identity F(u) = f(u,u,u). Finally, the incidence
structure of the points and lines in Fig.1 is reflected in the labels: All points whose
labels share at least two arguments lie on the same line. The exact position of a point
on this line is determined by the remaining third label: As ¢ moves with constant speed
between 0 and 1, the point f(0,¢,1), e.g., moves with constant speed between f(0,0,1)
and f(0,1,1). The point f(0,¢,1) lies ¢ of the way from f(0,0,1) to f(0,1,1). Moving
on a line with constant speed means that the polar form is affine in each argument, or

*This work has been partly supported by the Natural Sciences and Engineering Research Council of
Canada through Personal Operating Grant OGP0105573 and Strategic Operating Grant STR0040527

simply multiaffine. Thus the polar form f of a cubic polynomial curve F'is a symmetric
triaffine map that satisfies F'(u) = f(u, u, u).

£(0,0.1) F0.£1) £(0,1,1)

£(0,0,0) = F(0)

Figure 1: A cubic Bézier curve and the de Casteljau Algorithm.

Note that the above properties allow to reconstruct the point F(¢) from the Bézier
points f(0,0,0), £(0,0,1), f(0,1,1), and f(1,1,1) as follows: First we interpolate lin-
early along the edges of the control polygon to obtain the points f(0,0,¢), f(0,t, 1),
and f(¢,1,1). Then we interpolate linearly between these points to obtain f(0,t,t) and
f(t,t,1). Finally, the last step of interpolation between these two points yields the point
F(t) = f(t,t,t) on the curve. This is exactly the de Casteljau Algorithm.

2 The polar form of a polynomial curve

We now wish to generalize our introductory discussion from cubics to polynomial curves
of arbitrary degree. In particular, we wish to establish the so-called Blossoming Principle
[5, 4, 11, 12, 13] which essentially states that every polynomial has a unique polar form.

We first need a little bit of notation. Recall that a map f : R — R’ is affine if it
preserves affine combinations, i.e., if f satisfies f(3; oju;) = 5 a;f(u;) for all scalars
a1, ..., € Rwith 30; = 1. A map f: R" — R" is n-affine (or just multiaffine) if it
is an affine map in each argument when the others are held fixed. Thus f is multiaffine if

f(ul,...,Zozjui].,...,un) :Zajf(ul,...,ui].,...,un)
J J

foralli=1,...,n and ay,...,a, € R with }_;a; = 1. Finally, f : R" — R! is called
symmetric if it keeps its values under any permutation of its arguments.

It is possible to extend the domain of a symmetric multiaffine map f to vectors: Let
fi = w; — v; be a vector. We can then define f(uy,..., u, g, 51, e ,fq) recursively as

f(ul,...,un_q,él,...,fq) =

~ ~

f(ll,l, .. .,Un_q, wl,fg PP ,&1) — f(ul, .. .,Un_q, 1)1,52 e 7€q)'

Note that this definition is in fact well-defined, i.e., only depends on the vectors fi, not
on their starting nor end points w; and v;.

With this notation in place we are then able to state the following Blossoming Principle
[11, 12, 13]:

Theorem 2.1 (Blossoming Principle) Polynomials F : R — IR' of degree n and sym-
metric multiaffine maps f: (R)" — R" are equivalent to each other. In particular, given
a map of either type, a unique map of the other type exists that satisfies the identity
F(u) = f(u,...,u). In this situation f is called the multiaffine polar form or blossom of
F', while F' is called the diagonal of f. Furthermore, the q-th deriwative of F' is given as

n!

F9O(y) = flu, ... u1,....1), (2.1)

(n—q)! Hn_/q—"—q/—’

where 1 =1 — 0 € IR is the standard unit vector and flu,. .., u, 1,....1) is defined as
above. &

Explicit formulas for the polar form f become particularly simple for monomials

In this case the polar form f is given by the formula

f(ul,...,un):Zai() Z Hu]‘,
=0 t sg|{1| n} JES
S|=1

and the coefficients a; satisfy

F(o R R
a = 100 _ (")f(o,...,o,1,...,1).
—_—— ———

q!
For the cubic polynomial
F(u) = ag +aju + ayu® + asu

we obtain, e.g.,
ap ag
f(ul, U9, U3> = Qg + E(Ul —+ Uy + U3> —+ g(ulle —+ UrUz + U3U1> —+ azu;UU3.

A coordinate-free formula for the polar form is [11]
1

fun) =~ Y ()R Y).

n. sc{1,...,n} t JES
|5|=1
We conclude this section with a discussion of the continuity conditions between two
polynomials in terms of polar forms. Essentially by rephrasing (2.1) we obtain the fol-
lowing theorem:

Theorem 2.2 (C%Conditions) Let F': R — R' and G : R — IR' be two polynomials
of degree n, and let w € IR. Then the following two statements are equivalent:

o I and G are Cl-continuous at u.

o flu,....u.uy,...,ug) =g(u,...,u,uy,....uy) foruy,...,u, € R .

3 Beézier curves

Why are polar forms useful? Let us consider a polynomial curve F : R — R’. Suppose
we wish to represent F' as a Bézier curve over some given interval A = [r,s]. What are
the Bézier points? Writing w as an affine combination of and s,

S—U u—r

U = T+ s,
sS—7 e
we obtain
s—u u—r
Flu) = f(u,...,u)= fluy . oo u,r)+ flu, ... u,s)
O S—7
_ 2 _ _
= (S u) f(u,...,u,r,r)+2<u T><s u)f(u,...,u,r,s)
§—=r s—r/) \s—r
N2
(u T) flu, ... u, s, s)
s—r
= ZBJA"(U) (1o 7, 8,00, 8),
0 \7:]_/7_/
where

_ J _ n—j
BAm(u): n <u r) (S u) 3 j:(),...,n,
J J s—r s —r

are the Bernstein polynomials w.r.t. A = [r, s]. Thus we have [5, 4, 11, 12|
Theorem 3.1 (Bézier Points) Let A = [r,s| be an arbitrary interval. Every polyno-

mial F: R — R can be represented as a Bézier polynomial w.r.t. A. The Bézier points
are given as

b; = f(r,...,r,s.....,5), (3.1)

where f is the polar form of F'. &

flrrr) =F(r)

Figure 2: The de Casteljau Algorithm in the case n = 3

Equation (3.1) immediately leads to an evaluation algorithm that recursively computes
the values

l —
bi(u) = f(r,....ru,...,u,s,...,5)

n—Il—j ! J
s—u w—r
- f<T7 7T7 u? 7u7 S’ 75) f(T7"'7T7 u’ 7u7 S? 7S>
S —7r ———— sS—7r ——— —— ——
n—l—j+1 -1 J n—l—j -1 Jjt+1
s—u w—r
= —— b (u) + bt (u
s —7 7 () s—7r j-l—].()7
from the given control points. For [= n we finally compute bij(u) = f(u,...,u) = F(u)

which is the desired point on the curve. The resulting computational scheme is illustrated
by Fig.2 and Fig.3. This algorithm was first studied by Paul de Faget de Casteljau [4, 5]
and is therefore called de Casteljau Algorithm.

Formula (3.1) also shows that the de Casteljau Algorithm offers much more than just
evaluation: Suppose that we wish to subdivide a Bézier curve F' over a given interval
A = [s,t] at an arbitrary parameter v € A. What are the new Bézier points of the left
and right segments F; and F,. with respect to the subintervals A; = [r, u] and A, = [u, s]?
Equation (3.1) tells us that the new Bézier points after subdivision are given as

by = f(r,...,7), bl =f(r,....,ru), ..., b, = f(u,...,u)
and
by = f(u,...,u), b= f(u,...,u,s), ..., bl = f(s,...,s). (3.2)

Inspection shows that these points are automatically computed during the de Casteljau
Algorithm and are stored along the left and right diagonals.

Finally, a slight modification of the de Casteljau Algorithm can be used to compute
arbitrary polar values f(uq,...,u,) by recursively computing the values

3

f(u, u,u)

S—u
S—T
u—rr
S—T
f(r,u,u) f(u,u,s)
S—u S—u
S—T S—T
u—r u—r
S—T S—T
f(r,r,u) f(r,u,s) f(u,s,s)
S—Uu S—Uu S—UuU
S—T S—T S—T
u—r u—r u—r
S—T S—T S—T
f(r,r,r) f(r,r,s) f(r,s,s) f(s,s,s)

Figure 3: The de Casteljau Algorithm for the case n = 3.

1 _
bi(uy,...,w) = f(r...,run, . us,..8)
—_——— ———— — —
n—Il—j l 7
S — U
= (ryoo ry Uy, e U1, S,y S)
s—r
n—l—j+1 -1 j
Uy T
+ flr o ooorug, oo g, s ,S)
s—r
n—l—j -1 j+1
S~y U —nr g1
= : bj (uh ‘e '7ulfl> + : bj+1(U17 ce Uy).
For [= n we finally compute b (uy,...,u,) = f(uy,...,u,). This algorithm is called

multiaffine de Casteljau Algorithm.

How about derivatives? After writing 1 = —=—(s — r), Formula (2.1) implies

S—T

n n
F’ = e — e = b; —b
(T> S—T<f(T, 7T75) f(T’ 7T>> S—T(1 (])
and similarly
-1
Fr(r) = "D, o, 1 by), ete.

These are the well-known derivative formulas for Bézier curves.

We conclude this section with a brief remark on affine invariance. Let F' = ¢oF be the
image of F' under an affine map (e.g., translation, scaling, rotation) ¢. The uniqueness
part of Theorem 2.1 implies that the polar form fof Fisgiven as f = ¢o f, and it follows
that the Bézier points b; of F satisfy

This means that the relationship between the curve F' and its Bézier control polygon is
invariant under affine maps.

4 B-Spline Curves

How can we extend the results of the preceding section from Bézier curves to B-splines?
We have seen that a polynomial curve F' and its polar form f is completely defined by its
Bézier points b; = f(r,...,7,s,...,s). Let

T <...<rm<s5<...<s,

be a non-decreasing sequence of real numbers. We wish to show that F' can equally well
be defined by its de Boor points d; = f(r1,...,7n—j,S1,-..,5;). Since r; # s;, we can
express v as an affine combination w.r.t. r; and s;,

Sj— U uU—rT;
u = T + Sj,
Sj —T; Sj — T
and by successively expanding
l _
dj(u) = f(ri, T jty o U, 81500, 85)
B Sj+1 — U
= FOr, oo a1, Wy e o Uy ST, e, S5)

Sj+1 — Tn—i—j+1

U — Tp—l—j+1
f(Tla"'7Tn—l—j7u7"'7u7517"'7Sj+1)
Sj+1 = Tn—l—j+1
Sj+1 — U _ U — Tp—l—j+1 _
= — di M u) + P dl ()
Sj+1 — Tn—i—j+1 Sj+1 — Tn—i—j+1

f(ri,ra,51) flryu 51) f(r1, s1,52)

| of(s1,52,53)

Figure 4: The de Boor Algorithm for the case n = 3.

we see that F'(u) = dj(u) is in fact completely determined by the points d; = f(ry, ..., s;).

Conversely, suppose that the points d; = f(ry, ..., 7, 51,...,5;) are given. We can
then use the above recurrence to evaluate the curve F' at an arbitrary parameter value
u. Inspection shows that the resulting algorithm is identical to the de Boor Algorithm
for the evaluation of a B-spline segment from its end points. We thus have the following
[12, 13, 16]:

Theorem 4.1 (de Boor points) Every polynomial F : IR — IR' can be represented as
B-spline segment over a non-decreasing knot sequencer, < ... <1 < s <...<s,. The
de Boor points are given as

dj:f(rrl;---7Tn—j751;---75j>7 (41)
where f is the polar form of F'. &

Theorem 4.1 and the de Boor Algorithm are illustrated by Fig.4 and Fig.5. Again,
the multiaffine version of the algorithm can be used to compute arbitrary polar values

f(uy, ..., u,) from the given control points.
Even more important than evaluation is knot insertion. Suppose that the knot se-
quence 1, < ... <71 < s; < ... < s, is given and that we wish to insert a new knot

t with 1 < t < s;. Equation (4.1) tells us that the new control points dj- after knot
insertion are given as

E3
d] — f(t77"1’...,Tn_j—17sla“‘7sj>
_ _Sin Tt
e —_— f(T]_,-c-7Tnfj7s].7“‘7sj>
Sj+1 = Tn—j
t— Thi
—J
4+ — f(rl,...,Tn7j71,317~~a5j+1)
Sj41 — Tn—j
Si1—t t—Tnj
= M 4, + —" 4y,
— -4 o A

f(u, u,u)

S1—U
S1—T1
u—"ri1
$1—T1
f(T17u7u> f(uvuv Sl)
So—u
S$2—T1
f<7'1, 9, 1) f<7'1a u, 31) f(ua 51, 52)

S1—u S2—u
51—T3 §2—T2
u—r3 u—71
$1—T3 §3—T1
f<T17TQaT3> f(rlar%sl) f(rlaShSQ) f<51752a83>

Figure 5: The de Boor Algorithm for a cubic B-spline segment.

This is exactly the Boehm Algorithm. Note that the Boehm Algorithm is identical to the
first step of the de Boor Algorithm. Other knot insertion algorithms, as, e.g., the OSLO
Algorithm, have been studied in great detail in a sequence of papers by P.J. Barry and
R.N. Goldman [1, 9]. A thorough treatment of this material can be found in [2].

We conclude this section with a brief discussion of the miracle that B-spline curves
are C"%-continuous at a knot of multiplicity ¢. In order to keep our discussion as simple
as possible we only consider the case where {t;}; is a sequence of simple knots. Let
F o [ti tiy] — RYand Fiqq : [tiy1, tise] — R’ be two adjacent B-spline segments that join
at the knot ti+1' Since fi(tifn—f—j—l—la ey ti-l—j) = i—l—l(tifn—l—j—i—la ey ti-l—j)’ for] =]_7 oo, ny
successive expansion shows that

fi(tH_l,U, P ,U) = fi+1(ti+1a Uy own, u)

Then (2.1) implies that F; and F;;; are in fact C"!-continuous at t;;. The overlapping
de Boor schemes of two adjacent cubic B-spline segments are shown in Fig.6.

f(u, u,u) (u, u,u)
s—u t—u
s—r t—s
s
f(r,u,u) f(u,u,s) (s,u,u) g(u,u,t)
s—u t—u T—
s—q t—r T—
u—q u—r
s—q t—r
f(q,r,u) f(r,u,s) (rys,u) f(u,s,t)=g(s, u,t) g(u,t,x)
s—u t—u T—u y—u
s—p t—q T—Tr y—s
u—p u—q u—r
s5—p t—q T—r
f(p.q,7) flq,r,) =gla,r,s) f(rst)=glrst) (s t,x)=g(s t,2) g(t,z,y)

Figure 6: Overlapping de Boor schemes for two adjacent cubic B-spline segments F' :
[r,s] — R" and G : [s,t] — R" over the knot sequence ...,p,q,7,s,t, 2,9, ...

10

5 Tensor product surfaces

By far the most popular surfaces in Computer Aided Geometric Design and computer
graphics are tensor product surfaces: Given a curve scheme F(u) = X", Bi(u)b;, b; € RY,
the corresponding tensor product scheme is defined as

n m

F(u, U) = ZZBz<U> Bj(?}) bija bij S Rt,

i=0 j=0

which can also be written as
F(’LL, U) = ZBZ<’LL> biv with biv = bi<?}) = ZBj(U>bij-
i=0 =0

The last equation demonstrates that tensor product surfaces may be considered as curves
of curves, and thus explains that we first have to understand curves in order to understand
tensor product surfaces.

Let us now consider the polar form of a polynomial tensor product surface. Let

F:RxR—R: (u,v) — F(u,v)

be a polynomial tensor product surface of degree n in u and of degree m in v. In order
to compute the corresponding polar form frp of ' we simply have to polarize both
independent variables u and v separately. The resulting map

fre R < R™ — R : (u1,...,un;01,. .., 0m) = fre(Us, ...t V1, .., U)
is then characterized by the following properties:
e Symmetry: frp is symmetric in the variables u; and v; separately, i.e., we get
Jrp(ur, . v, oo 0m) = frp(Uaeys o Un(n); Vo(l)s - - > Va(m))
for all permutations 7 € ¥, and 0 € X,,,.
e Multiaffine Property: frp is affine in each of the variables u; and v; separately.
e Diagonal Property: frp(u,...,u;v,...,v) = F(u,v).

In generalization of the curve case, the Bézier points b;; of F' in the representation

F(u,v) = X o Bl'(u)B}*(v)b;; as a tensor product Bézier surface over [p, g x [r, s] are
given as
bij :fTP(pa"'7p7Q7“‘7q;T7“‘7T787'"7'9)
n—i) m—j 7

while the de Boor points d;; of F'in the representation F'(u,v) = 3=, 3, N/*(u)N"(v)d;; as
segment of a tensor product B-spline surface over the knot vectors S = {s;} and 7' = {¢;}
are given as

dij = fre(Sivts s Signitigts o tipm).
Many algorithms that have been discussed in the previous sections can then be generalized
from Bézier and B-spline curves to Bézier and B-spline tensor product surfaces.

11

6 The polar form of a polynomial surface

From now on we wish to discuss ‘true’ surfaces. We start with the Blossoming Principle
which generalizes almost word-by-word from curves to surfaces:

Theorem 6.1 (Blossoming Principle) Polynomials F' : R* — IR' of degree n and
symmetric multiaffine maps f : (R2)” — R" are equivalent to each other. In particular,
given a map of either type, a unique map of the other type exists that satisfies the identity
F(u) = f(u,...,u). In this situation f is called the multiaffine polar form or blossom of
F, while F' s called the diagonal of f. Furthermore, the g-th durectional derwative of F
with respect to vectors 51, . §q € IR? is given as

‘ ~ ~
D«fl,...,éqF<u> = ﬁf(u,...,u,&,...,éq). (6.1)

where f(u, ..., u, &, ,fq) is defined as in Section 2. &
Again, things are particularly simple for monomials. For the quadratic polynomial
F(“) =agp +aj u-+ag v+ +ay u? + ap] uv + age v?

we obtain, e.g.,

a a a
fluag,uy) = agy + <1 (uy + ug) + % (v1 4 v2) + agy uyuy + % (u1vg + ugvy) + agy V102

1
2
The coordinate-free formula for the polar form becomes [11]
1

f(ul,...,un):—' >o(-1 "’"F Zuj

n SC{1,...,n} JES
|S|=i

and the continuity conditions translate into

Theorem 6.2 (C4-Conditions) Let F : R* — R' and G : R* — ' be two polynomials
of degree n, and let u € IR*. Then the following two statements are equivalent:

o I and G are Cl-continuous at u.

o f(u,...,u,uy,...,u,) =g(u,....,u,u,...,uy) foruy,...,u, € R &.

12

4 AVAVAVAVAN Sy
Z SE54% SVAVAVANAVA . VA o t,t,t
LI AT LA IR A AARNLISIGSE (4 t)

> <7 VAVAVAVAVAVA\V&VAV/ '
B SRR S

/X NOVRE
VA N AVAVAVAVAN

q%%{%}%ﬂmmﬁév
5

VAVAVAVAVAVAVAV,
N VAYAVAVAVAY) o
\VAVAVAVAY/
Y
/Y
\Y/

VM f(ss.9
Figure 7: A cubic Bézier patch.

7 Bézier triangles

The straightforward analogue to Bézier curves are triangular Bézier patches. Counsider
a polynomial surface F' : R? — R’. Suppose we wish to represent F' as a triangular
Bézier patch over some given domain triangle A = A(r,s,t). Representing u € R in
barycentric coordinates w.r.t. A,

u=r(u)r+s(u)s+t(u)t, r+s+t=1,
we obtain

Fu) = f(u,...,u)

13

Figure 8: The de Casteljau Algorithm for a quadratic Bézier patch.

where

B = (1) rtw st

ik
are the Bernstein polynomials w.r.t. A = A(r,s, t). We have shown:

Theorem 7.1 (Bézier Points) Let A = A(r,s,t) be an arbitrary triangle. Every poly-
nomial F : R* — R' can be represented as a Bézier triangle w.r.t. . The Bézier points
are given as
bijk:f(I‘,...,I',S,...,S,t,...,t), (71)
—_——— ——

——
i j k

where f is the polar form of F'. &

Similar to the curve case, Theorem 7.1 leads directly to the de Casteljau Algorithm
for evaluation, subdivision, and computation of the polar form. The resulting computa-
tional scheme is illustrated in Fig. 8. The well-known derivative formulas and continuity
conditions for Bézier triangles follow directly from (6.1) and (7.1). For § =s —r, e.g., we
obtain

DgF(l’) =n (f(r,....r;8) = f(r,...,r,;v) =n (by110 — bnoo)

Finally, affine invariance also follows in exactly the same way as in the curve case.

14

f(ry,ra) f(ri,s1) f(s1.82)

Figure 9: The de Boor Algorithm for a quadratic B-patch.

8 B-patches

In the previous section we have seen that a polar form f is uniquely defined by its values
flr, .. r,;s,... s/ t,....t) on the vertices of a triangle A = A(r,s,t). This definition
can be generalized by assigning a family of - usually different - knots to each vertex of
the triangle A. The resulting surface representation is called a B-patch [17, 18].

We say that A = {ry,...,rn,81,...,8,, t1,...,t,} is a knot arrangement if all triangles
Ay = A(r;, s, ty) are non-degenerate. In this situation we can represent u in barycentric
coordinates w.r.t. A(r;,s;, ty),

u = 1) vigy + sge(u) s; 4+ tie(u) tr, o Tk + sge e = 1,

and by successively expanding

dﬁjk(u) = f(ry,...,ri81,...,8,t, ..t u, .. 1)
= Tiptgerker(@) f(ro, o Tip, sy, s, byt u, L a)
+ Siv1jrrkrr(a) f(ry, ..o rist, . 850, tr, L b0, 1)
+ tiv1jrrerr(a) f(re, oo risy, o s, by by, 0L 1),

we see that F(u) = djy(u) is in fact completely determined by the points d;;; =
f(ry,..., tx). We thus obtain:

15

Theorem 8.1 (B-patch control points) Let a knot arrangement A = {ry,... t,} be
given as above. Every polynomial F : R* — R’ can be represented as a B-patch over A
with control points

dijk:f(I'l,...,I‘Z‘,Sl,...,Sj,tl,...,tk> (81)
where f is the polar form of F'. &

Theorem 8.1 shows that B-patches are the analogue to B-spline curve segments for
surfaces. In particular, B-patches have a de Boor like evaluation algorithm that computes
a point F'(u) on the surface from the given control points through successive linear in-
terpolation. Again, the multiaffine version of this algorithm can be used to compute an
arbitrary polar value f(uy,...,u,). The resulting computational scheme is illustrated by
Fig.9.

9 A new multivariate B-spline scheme

By combining B-patches and simplex splines, a new multivariate B-spline scheme has
recently been developed in [3]. The new surface scheme is based on blending functions
and control points, and allows to construct smooth piecewise polynomial surfaces over
arbitrary triangulations of the parameter plane. Due to the given space limitations it is
impossible to discuss the surface scheme in glory detail. Some of its main features are
summarized in the following theorem:

Theorem 9.1 (Multivariate B-splines) Let F(u) = ¥; N/ (u)cf;, be a multivariate
B-spline surface. Then this surface has the following properties:

e Piecewise Polynomial: F(u) is a piecewise polynomial of degree n.

e Locality: Movement of a single control point C{jk only influences the surface on the
triangle A(I) and on the triangles directly surrounding A(I).

e Convex Hull Property: F(u) lies inside the convex hull of its control net.
e Smoothness: The surface F(u) is generically C"~'-continuous everywhere.

e Affine Invariance: The relationship between the surface F' and its control net s
affinely invariant. &

A first implementation has succeeded in demonstrating the practical feasibility of the
fundamental algorithms underlying the new surface scheme [8, 18]. Quadratic and cubic
surfaces over arbitrary triangulations can be edited and manipulated in real-time.

16

Figure 10: Solving the polygonal hole problem using triangular B-splines: First, the
piecewise polynomial surface around the hole is represented as linear combination of
B-splines (top). This B-spline surface can then be extended to produce an overall C"~!-
continuous fill of the hole (bottom). Note that this method can achieve C'-continuity
with piecewise quadratics, and C*-continuity with piecewise cubics.

17

In order for a surface scheme to be useful in practice, one must be able to represent
as many surfaces as possible by the new scheme. The following theorem [18] is rather
remarkable:

Theorem 9.2 (Polynomial and piecewise polynomial representation) Any poly-
nomzial or piecewise polynomaal surface F' can be represented by the new B-spline scheme.
In this situation the control points are obtained as

cfjk = f;(xrl,... xl st .. ,s§,t{, oty (9.1)

where f; 1s the polar form of the restriction of F' to the triangle A;. &

Among other applications, Theorem 9.2 allows to derive a solution to the polygonal
hole problem, see Figure 10.

10 A few historical remarks

Polar forms are a classical mathematical tool for the study of polynomials. In the context
of Computer Graphics and Computer Aided Geometric Design they have first been con-
sidered by Paul de Faget de Casteljau at Citroen [4, 5] and by Lyle Ramshaw [11, 12, 13].
The focus of de Casteljau’s original work has been on Bézier curves and triangular Bézier
patches, and especially on the construction of quasi-interpolants [6]. Ramshaw’s treat-
ment is much more algebraic and uses techniques such as homogenizing and tensoring.

More recently, the polar approach to splines has been expanded and applied by various
researchers. Seidel [16] applies polar forms directly to the B-spline blending functions and
gives a simple development of B-splines from scratch. He also discusses the relationship
between polar forms and knot insertion. Barry and Goldman [1, 9] relate polar forms to
other B-spline approaches and use polar forms for a thorough discussion of knot insertion
for B-splines. Lee [10] and Strom [21] also contribute to this area. Seidel [20] uses the
geometry behind polar forms to extend polar forms to geometrically continuous spline
curves. Extensions of this geometric approach to surfaces are discussed by Schmeltz [15].
DeRose implements polar forms as an abstract data type and uses them as the basis of a
software library [7]. Among other things, he uses polar forms for curvature computations
and for composing polynomials.

Polar forms have also been helpful in the development of new surface schemes. Seidel
[17] introduces a new surface representation, the B-patch, which may be considered the
analogue to a B-spline segment for surfaces. Dahmen, Micchelli, and Seidel [3] combine
B-patches with simplex splines and develop the surface scheme of the preceding section.
An implementation of this scheme is discussed in [8, 18]. The scheme allows to model
smooth piecewise polynomial surfaces over arbitrary triangulations.

18

References

[1] P.J. Barry and R.N. Goldman. Algorithms for progressive curves: extending B-spline
and blossoming techniques to the monomial, power, and newton dual bases. In R.N.
Goldman and T. Lyche, editors, Knot Insertion and Deletion Algorithms for B-Spline
Modeling. STAM, 1992.

[2] P.J. Barry, R.N. Goldman, L. Ramshaw, and H.-P. Seidel. Blossoming: The New
Polar-Form Approach to Spline Curves and Surfaces, SIGGRAPH 91 Course Notes
#26. ACM SIGGRAPH, 1991.

[3] W. Dahmen, C.A. Micchelli, and H.-P. Seidel. Blossoming begets B-splines built
better by B-patches. Math. Comp., 59:97-115, 1992.

[4] P. de Casteljau. Outillages méthodes calcul. Technical report, Andre Citroen, Paris,
1959.

[5] P. de Casteljau. Formes a Poles. Hermes, Paris, 1985.
[6] P. de Casteljau. Le Lissage. Hermes, Paris, 1990.

[7] T.DeRose, R.N. Goldman, and M. Lounsbery. A tutorial introduction to blossoming.
In H. Hagen and D. Roller, editors, Geometric Modelling, Methods and Applications.
Springer Verlag, 1991.

[8] P. Fong. Shape control for B-splines over arbitrary triangulations. Master’s thesis,
University of Waterloo, Waterloo, Canada, 1992.

[9] R.N. Goldman. Blossoming and knot insertion algorithms for B-spline curves.
Computer-Aided Geom. Design, 7:69-81, 1990.

[10] E.T.Y. Lee. A note on blossoming. Computer-Aided Geom. Design, 6:359-362, 1989.

[11] L. Ramshaw. Blossoming: A connect-the-dots approach to splines. Technical report,
Digital Systems Research Center, Palo Alto, 1987.

[12] L. Ramshaw. Béziers and B-splines as multiaffine maps. In Theoretical Foundations
of Computer Graphics and CAD, pages 757-776. Springer, 1988.

[13] L. Ramshaw. Blossoms are polar forms. Computer-Aided Geom. Design, 6:323-358,
1989.

[14] A. Rockwood. A brief introduction to blossoming. In Curve and Surface Design:
From Geometry to Applications, SIGGRAPH’92 Course Notes #15, pages 34-45.
ACM SIGGRAPH, 1992.

[15] G. Schmeltz. Variationsreduzierende Kurvendarstellungen und Krimmungskriterien
fur Bézierflichen. PhD thesis, TH Darmstadt, Germany, 1992.

19

[16] H.-P. Seidel. A new multiaffine approach to B-splines. Computer-Aided Geom. De-
sign, 6:23-32, 1989.

[17] H.-P. Seidel. Symmetric recursive algorithms for surfaces: B-patches and the de Boor
algorithm for polynomials over triangles. Constr. Approz., 7:257-279, 1991.

[18] H.-P. Seidel. Polar forms and triangular B-Spline surfaces. In Euclidean Geometry
and Computers. World Scientific Publishing Co., 1992.

[19] H.-P. Seidel. Representing piecewise polynomials as linear combinations of multivari-
ate B-splines. In T. Lyche and L. L. Schumaker, editors, Curves and Surfaces, pages
559-566. Academic Press, 1992.

[20] H.-P. Seidel. Polar forms for geometrically continuous spline curves of arbitrary
degree. ACM Trans. Graph., 12:1-34, 1993.

[21] K. Strom. Splines, Polynomials and Polar Forms. PhD thesis, University of Oslo,
Oslo, Norway, 1992.

20

