COMS S1007
Programming Exercises

July 5, 2007
EASY

Create a BankAccount class that has the following attributes (member variables): name, ID, and balance. The class should also have methods that allow you to deposit money and to withdraw money, but you are not allowed to withdraw more than the current balance.

Then create a driver that simulates a simple ATM by doing the following: First, prompt the user for the information necessary to create the account. Then, present the user with four options: deposit money, withdraw money, get balance, or quit. After performing either of the first two operations, you should display the current balance. Keep presenting the user with these options until the user decides to quit.
MEDIUM
Create a class that represents a music CD. The CD should have the following attributes: artist, title, and price. Those should all be set in the constructor, and you should create accessor methods for each. 

Then create a class to represent a collection of CDs. It should have an array of CD objects as a member variable. It should also have methods that allow you to do the following: 

· add a new CD to the collection

· get the total price of all the CDs in the collection

· list the title of all the CDs in the collection for a given artist

Lastly, create a driver class that tests all of these methods, perhaps by asking the user to enter data and select commands from a menu, or just by automating everything.

HARD
In this assignment, you will create a program that allows the user to play the game Nim against the computer. Nim works like this: you start with a pile of marbles, and then each player on his/her turn removes at least one marble but no more than half the marbles that are remaining. The player who removes the last marble loses. 
Your program should choose a random number between 10-100 for the initial pile of marbles, and should randomly choose which player goes first. Your computer player should randomly remove a legal number of marbles on its turn (though you can modify the computer player’s strategy once you get the game working, if you’d like). 

The program should have at least three distinct Java classes. Before you begin programming, consider who the “actors” are in the game and how you could separate their functionality into smaller parts.
