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Abstract

In computational camera research, people
design unconventional optics to sample the
light field in a way that is radically different
from the traditional camera and preserve new
forms of visual information for various appli-
cations. When one has an idea of optics de-
sign, it is very often that an evaluation based
on simulation has to be conducted first be-
fore building a real system. However, how to
quickly simulate an unconventional camera is
often a challenging problem even with profes-
sional optical design software (e.g. Zemax).
First, these software is designed for optics
researches and usually do not support light
field, which is a central concept in computa-
tional camera research. Secondly, researchers
have to spend plenty of time in designing de-
tailed physical profiles of optical elements. In
this project, we develop a framework of vir-
tual computational camera for light field pro-
cessing. With this framework, one can easily
simulate the light field processing of a virtual
computational camera.

In the proposed framework, we formulate
three categories of optics, including linear
transform optics (lenses and prisms), dot-
production optics (photomasks), and con-
volution optics (diffusers and some phase-
plates). We propose an efficient computation
strategy to render light fields at a decent res-
olution.

1. Introduction

Computational cameras, which use new optics to map
rays in the light field to pixels in an unconventional
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fashion, have attracted increasing attentions in recent
years(Nayar, 2006). Due to the unconventional op-
tics, computational cameras can optically encode new
and useful forms of visual information in the cap-
tured image for the afterward interpretation. For ex-
ample, researches show that a simple photomask can
be used in a camera for different purposes. (Levin
et al., 2007) put an optimized mask at the aperture
plane for the purpose of depth from defocus. (Zhou
& Nayar, 2009) optimized different aperture patterns
for better performance of defocus deblurring. (Veer-
araghavan et al., 2007) placed a planar photomask in
the optical path between the lens and sensor for light
field acquisition. Besides, many other optics, such as
prisms, phase-plates, lens arrays, diffusers, and so on,
have also been widely used for a variety of applications
(Lee et al., 1999)(Ng et al., 2005)(Dowski & Cathey,
1995)(Garćıa-Guerrero et al., 2007).

People may notice that few of these computational de-
signs are easy to implement. Actually it is not always
possible for one to open an lens and input something
inside precisely. Before doing these, one may prefer to
conduct a simulation to verify the design and optimize
the settings. One possible way is to use some pro-
fessional optical design software (e.g. Zemax(Geary,
2002)). With these professional software, one can de-
sign the detailed profile of each optics and simulate
how rays will be processed. If the profiles are given
precisely, a high precision output which perfectly fits
to the real result is expected. However, these opti-
cal design software are not well designed for computa-
tional camera researches.

First, these software do not support light field(Levoy
& Hanrahan, 1996), a central concept in most com-
putational researches. Some of them may be able
to ray trace a planar lambertian scene and simulate
a limit resolution image, but to my best knowledge,
none of them is able to simulate the imaging process
of a general light field. Secondly, using these software
forces researchers to spend plenty of time in designing
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detailed physics profiles of optical components. Al-
though doing this may help to clarify the feasibility
issue at the very beginning, it might not be the right
time.

Also, it should be noted that for the 4D nature of light
field and the complicated optics properties, in many
cases, it is difficult or time consuming to write a sim-
ulator from scratch. For example, in (Veeraraghavan
et al., 2007), the authors proposed to place a mask in
the optical path. Intuitively, it is simple. However,
most people may find it extremely difficult to simulate
such a system. This is because human usually is not
good at thinking in a 4D space and because the sim-
ulation algorithm is very tricky for the massive size of
4D light field.

Our motivation is to build a framework of virtual com-
putational camera, with which researchers can quickly
prototype their ideas and simulate how the systems
will work with any given light field. This simulation is
good for a concept verification or understanding before
one really designs detailed physics profiles of optics or
implements a real system.

1.1. Design Purpose

To better serve researches in computational camera,
the virtual computational camera will have the follow-
ing properties:

• Light field based: all the processing should be per-
formed on light field.

• Object oriented: users can simply define optics
elements and indicate where to place, and do not
have to care too much about the detailed process-
ing issues.

• Virtual: All the components are defined mathe-
matically. Users do not have to worry about the
implementation issues at this stage.

• Reasonable Resolution and precision: We require
the system to afford precise simulations at a rea-
sonable resolution.

2. Related Work

Ray tracing (Glassner, 1989)(Levoy, 1990) is a popu-
lar method widely used in graphics rendering and also
in most optical design software. This method traces
each light through the pixel and computes how the
ray will be changed at every intersection to any ob-
ject. Ray tracing is usually computational expensive,
and therefore does not support light field processing
well.

Light field rendering using matrix optics (Ahren-
berg & Magnor, 2006)(Georgeiv & Intwala, 2006) is a
more effective rendering method for imaging. By mak-
ing use of the matrix optics (Halbach, 1964)(Gerrard
& Burch, 1994), this method propagates the optics
transform matrix instead of transforming the light field
at each intersection, and therefore greatly reduces the
computation cost. However, all the previous discus-
sions are strictly constrained to a system that only has
matrix optics, such as lenses and prisms. We will show
that many widely used optics, like photomasks and dif-
fusers, cannot be formulated as ray transfer matrices.
These methods cannot be applied once any non-matrix
optics is present in a camera.

In our work, we formulate three categories of optics,
including linear transform optics (lenses, prisms), dot
production optics (photomasks), and convolution op-
tics (diffusers and some phase-plates). In addition, we
show how to efficiently render the light field when they
are presented together in a camera system. (Convolu-
tion optics has not been discussed yet in the current
version.)

3. Light Field and Camera

3.1. Light Field

A light field is a function that describes the amount
of lights in every direction through every point in a
space(Wiki, 2009)(Levoy & Hanrahan, 1996). For a
open space, the light field is a 4D function or can be
written as a 4D array in the discrete case. Though
light field can be generalized to include the temporal
and spectrum dimension, we constrain ourselves to the
typical 4D light field in this project.

There are various parameterizations of 4D light field,
among which the most common is the two-plane pa-
rameterization shown in Figure 1 (a). In this project,
a variant of UVST space shown in Figure 1(b) is used
to simplify the later light field analysis.
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Figure 1. Parameterization of 4D Light Field. (a) The
most commonly used UVST parameterization; (b) The
variant of UVST parameterization which is used in this
paper.
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3.2. Camera

Camera is a device that projects 4D light fields to
2D images. To achieve a desirable projection, some
optical elements have to be used, including lenses,
coded aperture, phase plates, sensor, and so on. As
shown in Figure 2, a camera can be simplified as a
layered optical processing system, which takes a 4D
light field as input, processes the light field with dif-
ferent layers of optical elements, and records a 2D im-
age from the processed light field. Accordingly, every
optical element can be defined as a light field trans-
form function: F : L(U, V, S, T ) → L′(U, V, S, T ), and
the sensor can be defined as a projection function:
P : L(U, V, S, T ) → I(U, V ).
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Input 4D

Light Field
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Figure 2. A Layered Abstract Model of Camera.

To simulate a camera, one can do ray tracing as in
graphics rendering, that is to trace every light in the
light field from the scene, through every optical ele-
ment, to the sensor. But, this ray tracing is not only
computational prohibited for a decent resolution of 4D
light field, but also requires tricky programming tech-
niques due to the optical properties of each element.
Actually, we can see that most commonly used optical
elements, though behave quite differently from surface
reflectance, can be concisely formulated in math. By
making use of these properties, we can do much more
efficient and precise simulation. In this section, we first
formulate three categories of optical elements. In Sec-
tion 4, we will discuss how to do efficient and precise
simulation by using these formulations.

3.2.1. Optics: Light Field Linear Transform

Linear or Gaussian optics can be formulated as the
use of matrix methods in geometrical optics(Halbach,
1964)(Gerrard & Burch, 1994). This idea has been ex-
ploited for a long history since 19th century - the age
of Gauss. Ray transfer matrix analysis (also known as
ABCD matrix analysis) based on the matrix represen-
tation has been used for ray tracing in some optical
systems. People usually use a 2 x 2 matrix and trace
specific rays in a 2D space and ray transfer matrices
for 2D light field have been discussed in (Georgeiv &

Intwala, 2006). However, with the advance of vision
and graphics, light field is becoming a central concept
in these research area. It is necessary to extend these
transform matrix to the 4D space.

Note that this linear transform only changes the coor-
dinates of rays, but does not change the value. Given
a light field, L(u, v, s, t), and a ray transfer matrix, M,
the output light field, L′(u, v, s, t) can be computed as:

L′(u, v, s, t) = L([u, v, s, t] ∗M−1). (1)

For a discrete light field, [u, v, s, t]∗M−1 may not be a
valid integer index to L, so that interpolation method
has to be used. We denote this transformation as L′ =
T(L,M).

In this section, we explicitly formulate four ray transfer
matrices, which together yield a full freedom of linear
transform.
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Figure 3. Linear Tranform Optics. (a) A lens shears (s, t);
(b) Empty space propagation shears (u, v); (c) A horizontal
prism changes s.

Empty Space Propagation: First it should be
noted that the light field keeps changing when it prop-
agates over an empty space. As shown in Figure 3(a),
a ray (u, v, s, t) will become (u - s*d, v-t*d, s, t) after
traveling a distance of d. So, the propagation can be
simply formulated as a ray transfer matrix:

M1(d) =




1 0 0 0
0 1 0 0
−d 0 1 0
0 −d 0 1


 . (2)

Lens: In contract to the propagation, an ideal lens
will shear S-T instead of U-V as shown in Figure 3
(b). A lens of focal length f can be formulated as:

M2(f) =




1 0 1/f 0
0 1 0 1/f
0 0 1 0
0 0 0 1


 . (3)

Prism: A horizontal or vertical prism of angle θ only
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changes the s or t coordinator. Their ray transfer ma-
trices are:

M3(θ) =




1 0 0 0
0 1 0 0
0 0 1 −θ
0 0 0 1


 ,M4(θ) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 −θ 1


 ,

(4)

We can see that by combining M1,M2,M3,M4, we
have been able to achieve any linear transform for the
light field.

3.2.2. Optics: Light Field Projection

Sensor: A sensor is a device which projects a 4D light
field (L) to a 2D image (I) and can be easily formulated
as a projection, S:

S(L) =
∫

s,t

L(u, v, s, t)dsdt. (5)

3.2.3. Optics: Light Field Dot Production

Masks: As discussed in the introduction, people can
also insert a mask of some patterns into the lens sys-
tem. Especially, it is referred to as aperture pattern
when the mask is placed at the aperture plane. Any
planar mask K(u, v) can also be regarded as a light
field mask K(u, v, s, t), where the function value is in-
dependent of s and t. Therefore, when a light field
L(u, v, s, t) is filtered by a mask K(u, v), we will get a
new light field L′(u, v, s, t) = L(u, v, s, t) ·K(u, v, s, t).

3.2.4. Optics: Light Field Convolution

Diffuser: Diffuser is another different optics element
which scatters any incident ray. Although a conven-
tional diffuser yields an identical diffusion pattern over
the diffuser surface, advances in holographic research
has made it possible to do diffuser coding1. For a
coded diffuser, if the diffusion pattern at the location
(u, v) is defined as D(x, y|u, v), then the diffuser can
be formulated as a convolution:

L′(u, v, s, t) =
∫

x,y

L(u, v, s− x, t− y) ·D(x, y|u, v)dxdy(6)

L′(u, v, s, t) = L(s, t|u, v)
⊗

D(s, t|u, v) (7)

3.3. Example 1: A Conventional Camera

Here, I take a conventional camera as an example and
show how it can be interpreted in this view of light

1It is also one of my ongoing researches, cooperated with
Oliver Cossairt.

field transformation. Assume there is a point light
source at infinity, therefore we have a cluster of par-
allel input rays, as shown in Figure 3(a), denoted as
L(u, v, s, t). This light field is visualized in Figure 3(c)
1 as a line (a simplified 2D U-S view). The light field
is first processed by a lens of focus length f, which can
be formulated by the transform matrix M2(f). This
transform shears the light field and yields a new light
field as shown in Figure 3(c) 2. Then, when the light
propagates across the distance f and arrives at the
sensor plane, the light field is further sheared by the
transform matrix M1(f) and we get Figure 3(c) 3. Fi-
nally, the sensor projects this light field to the U-V
plane and gets an image – a focused point in this case.
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4. Sensor: I = S(L’)
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Figure 4. A ideal lens focuses parallel lights to one point in
the sensor. (a) Camera Geometry; (b) Formulate the light
field processing; (c) Visualize the light field at the sequent
stages.

3.4. Example 2: A Camera with a Photomask
Inserted

Now, let’s look at a more complicated computational
camera (Veeraraghavan et al., 2007). The geometry
of this camera is shown Figure 5 (a). We can easily
formulate this camera as in (b) and accordingly come
up with a processing procedure (c). In the next sec-
tion, we will discuss how to improve the efficiency of
the processing and how to better preserve information
during the processing.

4. Virtual Computational Camera

4.1. Light Field Generation

First of all, we need to synthesize 4D light fields as in-
puts to the virtual camera. There are various solutions
to this graphics rendering problem. Here, we show one
easy way. First, we construct a scene by using some
graphics tool, such as PBRT (Physically Based Ren-
dering (Pharr & Humphreys, 2004)) or OpenGL (Woo
et al., 1999); then we render a bunch of images with
different camera locations (view points).
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(c) Processing

1. Light Field: L(u,v,s,t)

2. Lens: M2(f)

3. Propagation: M1(d1)

6. Sensor: I = S(L)

(a) Geometry (b) Formulation
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6. I =  S(L)

3. L = t(L, M1(d1))

2. L = t(L, M2(f))

4. L = L . K

5. L = t(L, M1(d2))

(c) Processing

1. Light Field: L(u,v,s,t)

2. Lens: M2(f)
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6. Sensor: I = S(L)
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6. I =  S(L)

3. L = t(L, M1(d1))

2. L = t(L, M2(f))

4. L = L . K

5. L = t(L, M1(d2))

Figure 5. A camera with a planar photomask inserted in
the optical path. (a) Camera Geometry; (b) Formulate
every optical element

In our implementation, we write a short PBRT script
to describe the scene. PBRT enables us synthesize var-
ious illumination, object geometries and BRDF pro-
files. Then, we use Matlab to control the camera po-
sition and call the PBRT rendering program. All the
rendered images together make up a light field – each
image is a 2D slice of the 4D light field at a specific (u,
v) location. As input, these images will be loaded into
a 4D light field matrix, L(U, V, S, T). Figure 6 (a) and
(b) shows two views of a light field of resolution 500
x 500 x 20 x 20 that we have generated using PBRT.
This light field will be used in the later processing.

4.2. The Resolution Issue and My Solution

Due to the 4D nature of light field, a light field usually
is a massive data and this poses a great challenge to the
computation and memory resource. For example, the
above mentioned light field of resolution 500 x 500 x 20
x 20 takes 100M bytes. Furthermore, it must be noted
that when the light field is transferred by lenses or
propagates along the space, the information becomes
to fuse between the spatial and angular dimension, as
shown in Figure 1. As a result, the resolution has
to increase during these intermediate steps to avoid
information loss. We found at Step 4 of Figure 5(c), it
requires a resolution of 250 x 250 x 250 x 250 or higher
to preserve the information well, but this resolution
may lead to out-of-memory error in many systems.

To address this problem, we proposed a new process-
ing strategy which can handle this problem efficiently
without explicit light field compression (Magnor &
Girod, 2000) or increasing the computation intensity.
The basic ideas are:

• The input light field is usually more compressive
than the intermediate light field, because most
scenes tend to be lambertian and have low an-
gular resolution. Therefore, we only do light field

(d) Simulated Defocused Image

      with Coded Aperture

(c) Close-up (f) Close-up

(a) View 1 of Input Light Field

(e) Simulated Pinhole Image(b) View 2 of Input Light Field

Figure 6. Light Field and Simulation Results. (a) One pin-
hole view of the input light field (ground truth); (a) An-
other pinhole view of the input light field (ground truth);
(c) Close-ups; (d) A simulated defocused image of a coded
aperture camera (inverted); (e) A simulated image of a
pinhole; (f) Close-ups.
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transform at the sensor plane.

• The output of the whole system is a 2D image.
Therefore, we can combine the final project func-
tion S and the light field transform function T for
acceleration.

According to these ideas, we can rewrite the processing
procedure in Figure 5(c) as:

1. Input: L(u, v, s, t)

2. L = T(L,M2(f)∗M1(d1)∗M1(d2)) ·T(K, M1(d2))

3. I = S(L).

Here, Step 2 and 3 can be merged together if one only
needs the final image and is not interested in the final
light field.

4.3. Results

By using this strategy, we are able to simulate a com-
putational cameras as in Figure 5 or even more com-
plicated cameras, and process a light field of decent
resolution (500 x 500 x 20 x 20) in a reasonable time.
Figure 6 (d) shows the simulated defocused image (in-
verted); (e) shows the simulated pinhole image (in-
verted). Note that, when a mask is inserted in the
middle of the camera, rendering a defocused image for
an arbitrary light field is a very challenging problem for
most rendering software. In our Matlab implementa-
tion, this processing takes 8 minutes in an Intel 3GHz
PC.

Compare the close-ups of the simulated pinhole im-
age and one of the input view (ground truth), we can
see the results, though is not perfect, have been quite
good. The strip artifact appears because I temporarily
used the nearest neighbor interpolation method in the
T function.

5. Conclusion and Future Work

In this project, we have proposed a framework of vir-
tual computational camera. Three sets of basic op-
tical operations on light field, including linear trans-
form, dot production, and light field convolution, are
defined and implemented as basic functions in Mat-
lab. Furthermore, we propose an efficient strategy for
light field processing. With these works done, one can
easily simulate and evaluate a virtual computational
camera.

For the time limit, there still are several important
tasks remaining undone, which includes the light field

convolution, better interpolation algorithm for the
function T, and the 4D Fourier analysis components.
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