
Shape from Interreflections 

Shree K. Nayar, Katsushi Ikeuchi, and Takeo Kanade 

The Robotics Institute, Camegie Mellon University, Pittsburgh, PA 152 13 

Abstract 

All shape-from-intensity methods assume that points in a scene are 
only illuminated by sources of light. Most scenes consist of concave 
surfaces and/orconcavities that result from multipleobjects in the scene. 
In such cases, points in the scene reflect light between themselves. 
In the presence of these interreflections, shape-from-intensity methods 
produce erroneous (pseudo) estimates of shape and reflectance. The 
pseudo shape and reflectance estimates, however, are shown to cany 
information about the actual shape and reflectance of the surface. An 
iterative algorithm is presented that simultaneously recovers the actual 
shape and the actual reflectance from the pseudo estimates. The recovery 
algorithm works on Lambertian surfaces of arbitrary shape with possibly 
varying andunknown reflectance. The general behavior ofthe algorithm 
and its convergence properties are discussed. Both simulation as well 
as experimental results are included to demonstrate the accuracy and 
stability of the algorithm. 

1 The Interreflection Problem 

We address a challenging vision problem ''iat has remained unsolved for 
the past two decades. Surface elements in a scene, when illuminated, 
reflect light not only in the direction of the sensor but also between 
themselves. This is always the case except when the scene consists of 
only a single convex surface. These interreflections, also referred to as 
mutual illuminations, can appreciably alter the appearance of the scene. 
None of the existing vision algorithms reason about, or even take into 
account, the effects of interreflections. Consequently, interreflections 
often confuse vision algorithms and cause them to produce erroneous 
results. 

A class of vision algorithms that are particularly affected by in- 
terreflections are shape-from-intensify algorithms, such as, shape-from- 
shading [SI, photometric s t e m  [12], and photometric sampling [9]. All  
these methods, are based on the assumption that points in the scene 
are illuminated only by the sources of light and not other points in the 
scene; interreflections are assumed not to exist. As a result, existing 
shape-from-intensity methods produce erroneous results when applied 
to concave surfaces and concavities that result from multiple objects 
in the scene. As an example, Figure l a  shows a concave Lambertian 
surface of constant reflectance (albedo = 0.75). and Figure l b  shows 
its shape extracted using photometric stereo. The inability to deal with 
interreflections has in the past limited the utility of shape-from-intensity 
methods. 

(a) (b) 

Figure 1: (a) A concave surface. (b) Its shape extracted using photo- 
metric stereo. 
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We identify two separate problems associated with interreflec- 
tions; theforward (graphics) problem and the inverse (vision) problem. 
All previous work done in this area is related to the forward problem. 
The forward problem, involves the prediction of image brightness val- 
ues given the shape and reflectance of a scene. Hom [4] discussed the 
changes in image intensities due to interreflections caused by polyhe- 
dral surfaces that are Lambertian in reflectance. Koenderink and van 
Doom [7] formalized the interreflection process for Lambertian surfaces 
of arbitrary shape and varying reflectance (albedo). They proposed a 
solution to the forward problem in terms of the eigenfunctions of the 
interreflection kemel. Cohen and Greenberg [ l ]  modeled the scene as 
a finite collection of Lambertian planar facets and proposed a radios- 
ity solution to the forward problem and used it to render images for 
graphics. Recently, Forsyth and Zisserman [2] used a similar numerical 
solution to the forward problem to compare predicted image intensities 
with experimentally obtained image intensities for a set of Lambertian 
surfaces of known shape and reflectance. 

Our goal here is to solve the inverse (vision) problem. Given 
image intensities, we wish to recover the shape and reflectance of the 
scene in the presence of interreflections. The inverse interreflection 
problem is a particularly difficult one, for in its ambiguity, it resembles 
the well-known "chicken and egg problem" (Figure 2). If we can model 
the interreflection effects, we may be able to compensate scene images 
for these effects and extract accurate shape information. However, it 
is obvious that modeling interreflections requires prior knowledge of 
shape and reflectance. But it is shape that we are attempting to recover! 
So which one comes first, shape or interreflections? 

Shape Interreflections 

Figure 2: The inter-dependence between shape and interreflections 
makes shape recovery in the presence of interreflections a difficult problem. 

In this paper, we present a solution to the inverse problem tor 
Lamkrtian surfaces of arbitrary (but continuous) shape, with possibly 
varying but unknown reflectance (albedo). The shape and reflectance 
recovery algorithm works as follows. First, a local shape-from-intensity 
method is applied to the concave surface to obtain "pseudo" (erroneous) 
estimates of shape and reflectance. Our solution is based on the obser- 
vation that the pseudo shape and reflectance, though erroneous, cany 
information about the actual shape and reflectance of the surface. The 
pseudo shape and reflectance are used to model the interreflection ef- 
fects. We show that the pseudo shape is "shallower" than the actual 
shape and hence exhibits weaker interreflections. These interreflections 
are used to compensate the pseudo shape and reflectance estimates to 
obtain a better (more concave) shape estimate and reflectance informa- 
tion. This shape and reflectance is again used to model interreflections 
to obtain even more accurate shape and reflectance estimates from the 
pseudo estimates. In this manner, shape and reflectance estimates are it- 
eratively refined to finally converge to the correct shape and reflectance. 
A detailed analysis of convergence is given for the simple case of two 
planar surface elements. Convergence for the more general case is 
discussed and demonstrated by numerous simulation results. Several 
experimental results are included to demonstrate the robustness, accu- 
racy, and practical feasibility of the proposed algorithm. 
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2 Modeling Interreflections 

Our solution to the inverse interreflection problem is based on the so- 
lution to the forward problem; modeling interreflections for a surface 
of given shape and reflectance. Hence, this section will sewe as back- 
ground theoIy for subsequent sections. The interreflection model that 
we describe here is primarily based on the formulation proposed by 
Koenderink and van Doom [7]. All surfaces in the scene are assumed to 
be Lambertian. We will shortly see that this assumption is necessary 
to obtain a closed form solution to the forward interreflection problem. 
The Lambertian surface can have any arbitrary shape and varying re- 
flectance, i.e. albedo value (p )  may vary from surface point to surface 
point. In deriving the interreflection model, we will use radiometric 
concepts such as irradiance and radiance which are defined in Appendix 
A. l .  

2.1 Analytic Forward Solution 

Consider the concave surface x(u,  v) shown in Figure 3a. We are inter- 
ested in findin the radiance L(x)  of the point x due to the radiance L(x’) 
of the point x? The point x can be illuminated by the point x‘ only if 
the two points can “see” each other. The visibility or View function is 
defined as: 

Figure 3: (a) A concave surface in three-dimensional space. (b) Two 
surface elements that are visible to one another. 

where n and n’ are unit surface normal vectors at the points x and x’, 
respectively, and r is the vector from x’ to x.  The function View(x, x’) 
equals unity when the two points can illuminate each other and zero 
otherwise. The radiance of the point x is related to its irradiance E ( x )  
as: 

P ( X I  L ( x )  = - - -E(X) 

where p(x)  is the albedo function, and the factor p(x)ln is the bi- 
directional reflectance distribution function (Appendix A. 1) for a Lam- 
bertian surface. The irradiance E(x)  of the surface element dx due to the 
radiance of the element dx’ may be derived using the geometry shown 
in Figure 3b: 
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From a geometrical perspective, the interreflections between points x 
and x’ are govemed by the factor: 

] ( 5 )  
[ n . (-r)] [ n’. r]  View ( x ,  x’) 

K ( x ,  x’) = [ 
[ r . r]2 

K ( x ,  x’) is called the interreflection kernel and is a symmetric, positive 
definite function. It vanishes for surface points that do not illuminate 
one another either due to their orientations or due to occlusion by other 
points. The kemel is bounded by the geometrical constraint that no 
surface element can radiate in, or receive radiations from, more than a 
half-space around it. Hence: 

Now assume that the concave surface in Figure 3a is illuminated 
by a single distant point source of light in the direction s. Then, the 
radiance of the surface due to the source alone (excluding interreflection 
effects) may be expressed in terms of the irradiance of the surface due 
to the source: 

L, (x )  = + ) E , ( , )  (7) 

The irradiance due to the source is the flux incident per unit area of 
the surface and is proportional to the cosine of the angle between the 
source direction and the surface normal direction, i.e. &(x) = kns.  Thc 
constant of proportionality k is determined by the radiant intensity of 
the source and its distance from the surface. 

The total radiance of x is then expressed as a sum of the radiance 
due to the source and the radiance due to all other points on the surface: 

The above equation is referred to as the interrejection equation. It is 
similar in form to the Fredholm’s integral [7] [4] and does not lend itself 
to a straightforward solution. However, if all points on the concave 
surface have the same reflectance (p (x )  = p), a solution to L(x)  (or the 
forward interreflection problem) is given by the Neumann series as: 

L ( x )  = L, (x )  + f f l  / K, (x ,  x’)L(x’)dx’  (9) 
m= 1 

where 

K 
and K ,  = - x 

The following observations are made with respect to the above solution: 

0 It is important to note that the above solution is valid only under 
theLambertian assump,;on. For Lambertian reflectance, the radi- 
ance of a surface point is independent of the vantage point. As a 
result, both L ( x )  and L (x’) are constants in equation 8 and hence 
a solution can be obtained. 

The solution is iterative in nature; it is an infinite sum of the 
kemels K,,, that must each be evaluated using the previous kemel 
L-I. 
The solution may be interpreted as a mathematical rcpresenta- 
tion of the “ray-tracing’’ process that is often used in the area 
of computer graphics. The mth iteration explicitly represents the 
contribution of the m times interreflected rays. 

Though the Neumann series is an infinite one, the solution is 
guaranteed to converge to a finite value. This is because p(x )  < 
1 for all surface points, and hence, the series diminishes to zero 
as m approaches infinity. This is consistent with our real-world 
experience; diffuse concave surfaces that exhibit interreflections 
never appear to be infinitely bright. 
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2.2 Numerical Forward Solution 

Discretization of the concave surface leads to a more elegant forward 
solution than the Neumann series. The following solution has been 
previously used to render discrete images in graphics [ l ]  and to compare 
experimentally obtained image intensities with predicted intensities [2]. 
Let us assume the surface to be comprised of mfacets as shown in 
Figure 4. The radiance and albedo values of each facet i are assumed 
to be constant over the entire facet and equal to the radiance and albedo 
values at the center point xi of the facet, i.e. Li = L(xi) and pi = p(xi). 
Then we can write equation 8 as: 

I P = - 

Loosely speaking, this may be interpreted as a weighted averaging of 
radiance values in the direction of concave curvature. As a result of this 
effect, surface concavities tend to be visually less conspicuous. 

We would like to conclude this section with a brief note on the 
size of individual facets. We have assumed that radiance and albedo 
are constant over the facet area. This assumption is valid only when the 
facets a~ planar and infinitesimally small. While solving the forward 
interreflection problem, we are free to select appropriate (small) facet 
sizes. In solving the vision problem, however, we are limited by the 
resolution of the sensor used to image the scene. The image brightness 
at a "pixel" location is assumed to be constant over the entire surface 
facet that the pixel represents. The area dxj of the facet may be related 
to the area d4j of the pixel as: 

- p 1 0 .  . . o  - O K 1 2 . .  . . . . .  - 
o p 2 0 . . 0  K 2 1 0  . . . . . . . .  
. . . . . . . . .  K = . . . .  .O.. . . .  (13) 
. . . . . . . . .  . . . . . . . .  o . . .  
0 0  . . . p m  - - . . . . . . . . . .  0 - 

where S. is the entire surface of the facet j. Let us assume that the facets 
are indtesimally small, i.e. Sj = dxj. We define the discrete form of 
the interreflection kemel as: 

Kij = K ( x ~ ,  xj)dxj (11) 

where Kii is undefined and Kij vanishes for facet pairs that are not 
visible to one another. The discrete form of the interreflection equation 
can therefore be written as: 

or: 
( I - P K ) L  = 5 

where I is the identity matrix. Hence, we find that discretization of 
the surface enables us to obtain a non-iterative, closed-form solution 
to the forward interreflection problem. The kemel and albedo matrices 
are determined by the shape and reflectance of the surface, respectively. 
The source direction and intensity may be used to obtain the source 
contribution vector I+. Then the radiance of the surface facets, L, may 
be determined using the above equation. 

Equation 14 explicitly describes the radiance of a facet as the 
sumofits radiancedue tothe source and thecontributionsofotherfacets. 

Figure 4: Modeling the surface as a collection of facets, each with its 
own radiance and albedo values. 
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where nj and vj are the normal vector and viewing direction vector, re- 
spectively, for the facet j. For the case of orthographic image projection, 
the viewing vector is constant over the entire field of view, i.e. vj = v. 
Using equations 5 ,  11, and 16, we determine the discrete kemel to be: 

The kemel provides a good approximation only when the facets i and 
j arc both infinitesimal and distant from each other. Note the size of 
a facet also depends on its tilt with respect to the viewing direction. 
Therefore, while using the discrete kemel we assume that facets are 
not viewed at angles close to the grazing angle. The above kemel 
represents interreflections between two facets positioned and oriented 
in three-dimensional space. In Appendix A.2, we have also included 
the kemel form for the special case of three-dimensional surfaces that 
have single translational symmetry. 

3 The Extracted "Pseudo" Shape 

The previous section showed that surface radiance values are affected 
by the presence of interreflections. This indicates that if a shape-from- 
intensitymethod is applied to a concave surface it is expected to produce 
erroneous estimates of shape. In order to generalize the inverse inter- 
reflection problem that we are attempting to solve, we assume that the 
reflectance of the Lambertian surface is also unknown and may vary 
from point to point. Therefore, by the term shape-from-intensity, we 
mean those methods that extract both shape (orientation) and reflectance 
(albedo) information. Photometric stereo [12] and photometric sam- 
pling [9] are examples of such shape-from-intensity methods. In the 
presence of interreflections, these shape-from-intensities methods pro- 
duce erroneous shape as well as erroneous reflectance information. We 
refer to the extracted shape as the "pseudo shape" and the extracted 
reflectance as the "pseudo reflectance" of the surface. In this section, 
we investigate how the pseudo shape and reflectance are related to the 
actual shape and reflectance of the surface. 

Once again, consider the surface comprised of m facets (Figure 
4). Each facet i is defined as: 

where ni and pi are the unit surface normal vector and the albedo for 
the facet i ,  respectively. Therefore, the term "facet" represents both 
local shape and local reflectance information. The complete surface 
is then defined by the facet matrix F = [ N I ,  N2, ...... Nm I T .  From 
the interreflection equation (equation 15) we can express the surface 
radiance as: 

(19) L = ( I  - P K ) - ' L  
Since the surface is Lambertian, the source contribution vector L may 
be determined from the facet matrix F and the source direction vectors 
= [sx.  sy. sz lT as: 

L = ( I  - P K ) - ' F . S  (20) 
Now let us examine the result of applying photometric stereo to the 
surface. Three source directions, S I .  s2. and sg, are used sequentially to 
illuminate the surface. We assume that all three sources are visible to 
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all facets on the surface. The three resulting surface radiance vectors 
Ll , L2, and L3 may be expressed as: 

[LJ,L2rL3] = (1 - P K ) - ' F . [ S I , ~ ~ , S ~ I  (21) 

The extracted shape and reflectance information is represented by the 
pseudo facet matrix F, and is computed as: 

Fp = [Li  , Lz , L31. [si , sz I ssl-' 

Fp = ( I  - PK)- 'F  

(22) 

From equations 21 and 22 we find that: 

(23) 

Note that the albedo matrix P, the kemel matrix K, and the actual 
facet matrix F are all invariant to the direction and intensity of the 
illumination. Therefore, the pseudo facet matrix Fp is also illumination 
invariant, i.e. the extracted pseudo shape and pseudo reflectance are 
independent of the source directions used by the shape-from-intensity 
method to illuminate the object. We will shortly see that this property 
of the pseudo shape and reflectance enables us to recover actual shape 
and reflectance of the surface. 

The ifh pseudo facet' in F, may be written as: 

NPi = ,npi PP i 

where npi and ppi are the pseudo surface normal and the pseudo albedo 
for the facet i and, in the presence of interreflections, differ from the 
actual surface normal and actual albedo of the facet. We make a few 
important observations regarding the pseudo facets: 

From equations 23 and 20, we see that the pseudo facets are also 
Lambertian in their reflectance! 

While the actual albedo values must satisfy the physical constraint 
pi < I, the pseudo albedo values tend to be greater than the actual 
values and for actual albedo values close to unity, the pseudo 
albedo values may even exceed unity. 

The pseudo orientations may be described as a result of the 
weighted averaging of actual orientations in the direction of con- 
cave curvature. Qualitatively speaking, for concave surfaces the 
pseudo shape may be viewed as a smoothed version of the actual 
shape and appears to be "shallower" than the actual shape (see 
Figure 1). 

4 Recovering Actual Shape and Reflectance 

Our objective is to simultaneously recover both actual shape and ac- 
tual reflectance of the surface from the extracted pseudo shape and 
reflectance. The method is based on the observation that the pseudo 
shape and reflectance c a y  information about the actual shape and re- 
flectance. A closed-form solution for the actual shape and reflectance, 
however, does not seem possible as the pseudo shape and reflectance 
are highly non-linear functions of the actual ones. Hence, we seek an 
iterative approach. 

4.1 The Recovery Algorithm 

Figure 5 illustrates the flow of the algorithm. At first, a local shape- 
from-intensity method is applied to the scene. If the scene consists of 
a single convex surface, the extracted pseudo shape and reflectance are 
simply the actual ones. However, if the scene consists of concavities 
resulting from concave surfaces and/or multiple objects in the scene, 
the pseudo shape and reflectance differ from the actual ones. As we 
described in the previous section, the pseudo shape is expected to be 
shallower (less concave but yet concave) version of the actual shape. 
Hence, the algorithm uses the pseudo shape and reflectance as initial 
guesses of the actual shape and reflectance, to obtain initial estimates of 
the albedo matrix P and the kernel matrix K. It is important to note that 
the pseudo shape and reflectance serve as conservative initial estimates, 
in that, they produce interreflections that are greater than zero but less 
than in the case of the actual shape and reflectance. The estimated P, 
K, and the pseudo facets F, are then inserted in equation 23 to obtain 

I 

I 

I 

I 

I 

I 

I 

Integration 

Height 

. L?;r;i 
Figure 5: The shape and reflectance recovery algorithm. 

the next estimate of the actual facets. This estimate of the surface is 
expected to be more concave than the previous estimate and is used in 
the next iteration to obtain an even better estimate. The algorithm may 
be written as: 

F ~ + ~  = ( I  - P ~ K ~ ) F ,  (25) 

where fl = F, 

In the above equation, = P(Fk) and Kk = K (Fk). Note that 
each set of estimates of the surface facets provides estimates of both 
shape and reflectance. With each iteration, more accurate estimates of 
shape and reflectance are obtained and the result fmally converges at the 
actual shape and reflectance estimates. The convergence properties of 
the algorithm will be discussed later. We now state a few assumptions 
and obseivations related to the above algorithm. 

The surface is assumed to be continuous. Note that the inter- 
reflection kernel depends not only on the orientations of individ- 
ual facets but also their relative positions. Therefore, a depth 
map of the scene must be reconstructed (by integration) from the 
orientation map computed in each iteration of the algorithm. The 
continuity assumption is necessary to ensure integrability of the 
orientation maps. It appears that discontinuities in the depth of 
scene points can also be handled if this information is provided 
by a depth measurement method, such as, stereo. 
All facets that contribute to the interreflections in the scene must 
be visible to the sensor. It is easy to see that if facets that are 
not visible to the sensor affect the radiance values of the visible 
facets, the kernel matrix would, in a sense, be incomplete. In 
such cases, the result produced by the algorithm is difficult to 
predict but would be close to the desired result if the facets that 
are not visible do not contribute substantially to the radiance of 
the visible facets. 
The proposedrecovery algorithmmay beused inconjunction with 
any local shape-from-intensity method. The shape-from-intensity 
method used must be capable of computing accurate estimates 
of both pseudo shape and pseudo reflectance*. The recovery 
algorithm is in no way related to the shape-from-intensitymethod 
used to obtain the pseudo shape and reflectance. This fact is 
emphasized by the dotted line shown in Figure 5. 

No extra images (measurements), in addition to the images used 
by the shape-from-intensity method, are needed to recover actual 
shape and reflectance. 

For each iteration of the above algorithm, the kemel is computed 
for every pair of facets in the scene. Therefore, the algorithm is 
of O(Mnz)  complexity, where n is the number of facets in the 
scene and M is the number of iterations required for shape and 
reflectance estimates to converge. 

'These pseudo facets are different from the ones defined by Koenderink and van 
Doom in [7] 

'We do not include shape-from-shading algorithms in this category as they assume 
that the surface has constant albedo and that this albedo value is known a-priori. 
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4.2 Simulation Results 

Figure 7 shows simulation results for three-dimensional surfaces that 
The form of the 

interreflection kemel for this case is given in Appendix A.2. These 
simulation results are included to give the reader a feel for the behavior 

are assumed to have single translation symmetry. "r 

t 
of the algorithm. Experimental r e d t s  for the general three-dimensional 
case as well as the translation symmetry case will be presented in a later 
section. For each surface in Figure 7. the numerical forward solution 
(section 2.2) was used to predict the radiance of the surface from its ac- 
tual shape and reflectance. Facet radiance values fortwo different source 
dimtions were computed and a photometric stereo algorithm was used 
to compute the pseudo shape and reflectance estimates. Note that the 
single symmetry assumption reduces the problem to a two-dimensional 
one and only two source directions are necessary to compute facet ori- 
entations and albedo values. The pseudo shape and reflectance are then 
used by the recovery algorithm (equation 25) to compute the actual 
shapaand reflectance. 

For the surfaces in Figures 7a and 7b, a constant albedo value 
of 0.75 over the entire surface was used to determine the pseudo shape 
and reflectance. For the surface shown in Figure 7c, a ramp function 
that varies from 0.25 to 0.95 was used to compute the pseudo shape and 
reflectance. For the surface shown in Figure 7d, a checker-board albedo 
function that varies between 0.3 and 0.7 was used to compute the pseudo 
shape and reflectance. In Figure 7d, some sections of the surface are 
occluded from other sections. While computing the interreflections, the 
algorithm uses geometrical reasoning to determine if two facets on the 
surface are occluded from each other by other facets. In all of the above 
cases, the recovery algorithm did not rely on prior knowledge of surface 
reflectance, but rather used the pseudo reflectance along with the pseudo 
shape to recover actual shape and actual reflectance simultaneously. 

In Figures 7c and 7d the pseudo reflectances and the intermediate 
estimates of reflectance are also shown. For these surfaces, a conver- 
gence graph is also included that shows the mean orientution error e;, 
computed using all facets, for each iteration of the recovery algorithm. 
The orientation error at a surface point is defined as the absolute angle 
(in degrees) between the actual normal vector and the estimated normal 
vector. For all of the above surfaces, and numerous unreported sim- 
ulation results, fairly accurate shape estimates are usually obtained in 
about 7 iterations of the algorithm. 

5 Convergence 
In this section we study the convergence properties of the shape and 
reflatance ncovery algorithm. Since the interreflection equation is 
non-linear in the shape and reflectance of the surface, it is difficult to 
prove the convergence of the algorithm for the general case of arbitrary 
shape and reflectance. Therefore. we start by analyzing the convergence 
properties for the simplest case of two planar facets and later extend our 
analysis to the general case. 
5.1 ".Facet Case 

Consider two infinitesimal planar facets of equal size that are separated 
by a distance r (Figure 6a). We identify an axis (dotted line) with respect 
to which the two facets are symmetrically oriented and positioned. The 
unit normal vectors nI and n2 are coplanar and therefore are defined by 
just two parameters, namely, n, and n,. As a result of the symmetrical 
facet arrangement, the interreflection kemels forthe two facets are equal, 
i.e. K I ~  = K21 = TK.  Further, we assume that the two facets have equal 
albedo values, i.e. = p2 = p. By applying a shape-from-intensity 
method to the two facets, their pseudo facets can be computed. From 
equation 23 we see that the actual facets may be expressed in terms of 
the pseudo facets as: 

N2 = Npz - pKNpI  

where N I  and Nz are the actual facets and NpI and Np2 are the pseudo 
facets. A graphical illustration of the above relation is shown in Figure 
6b. If the recovery algorithm is applied to the pseudo facets, the result 
ofthe Kh iteration may be expressed as: 

NI'++' = NpI - pkKkNp,  (27) 

Nz'" = Np2 - pkKkNpI  

- I  I 
Figure 6: (a) The two-facet case. (b) The line constraint. All interme- 
diate estimates of the facet N I  must lie on the line passing through the 
vector C. 

where p' and Kk are computed using the intermediate facet estimates 
NI' and N2'. Let us focus our attention on one of the two facets, 
namely, N I .  Since NpI and Np2 are constant, new estimates of NI result 
solely from changes in the factor #Kk. Since pkKk is a scalar, the facet 
estimates NI' must lie on the line passing through the vector C (Figure 
6b). This line constraint implies that the convergence of NI' may be 
studied by analyzing the convergence of #Kk. 

We assume that the reflectance estimates pk do not vary sub- 
stantially from the actual reflectance p. This assumption is based on 
the observation that the pseudo reflectance results from the multiple 
reflections of light rays between the two facets. This process produces a 
pseudo reflectance, po, that maybe expressed as an infinite exponential 
series in the actual reflectance value p. Since the actual albedo must be 
less than unity, the higher order terms in the series may be neglected 
and the pseudo albedo is govemed by the first few terms. Therefore, 
for actual albedo values that are not close to unity (say p < 0.75), the 
pseudo albedo may be assumed to be close to the actual albedo. Hence, 
we make the assumption that the pseudo albedo and all intermediate 
estimates of albedo in the recovery process do not vary substantially 
from the actual albedo value, i.e. pk cz p. Therefore, variations in the 
factor pkKk are dominated primarily by variation in Kk.  

From the geometry shown in Figure 6a, we see that the relative 
orientation of the two facets is determined by the tilt angle 0,. The 
interreflection process, in a sense, tends to make the orientation of each 
facet more like that of the other facet. In other words, the pseudo facets 
are guaranteed to have a smaller tilt angle than the actual facets (Figure 
6b). Further, the interreflection kemel K is a monotonic function of the 
tilt angle 0.; K increases from zero tounity as 0, varies from zero to */2 
[lo]. Therefore, the first estimate of the kemel, namely, KO, is less than 
the actual kemel K but yet greater than zero. Consequently, the facet 
estimate NI' has a greater tilt angle than the previous estimate but less 
than that of the actual facet. With each iteration, therefore, the kemel 
estimates increase in value and approach the actual kemel value, i.e. 
5 K' 5 K"' 5 K. Equivalently, the facet estimates, NI', start from 
NpI and move along the vector C to finally converge at N I .  

The above argument holds for all facets whose pseudo albedo 
values do not vary substantially over the vector C. Figure 8a shows 
a convergence map for the two-facet case. Each point on the map 
corresponds to an instance of the actual facet vector N I ;  the tilt angle 
of the facets vary along the concentric circles and the albedo of the 
facets vary radially. For all instances of N I ,  the two facets are assumed 
to be separated by a constant distance of r = 1. For each instance of 
N I ,  the corresponding pseudo-facet NpI is computed using the forward 
interreflection solution and plotted on the convergence map for NpI 
shown in Figure 8b. The recovery algorithm is independently applied 
to each pseudo facet and afacet tilt error is computed at the end of 100 
iterations. The small dots in Figure 8a correspond to those actual facets 
for which the algorithm successfully recovers the actual facet from the 
corresponding pseudo facet. The large dots correspond to the facets for 
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which the algorithm does not converge at the actual facet but rather at 
some other point. Similarly, the small dots and large dots in Figure 8b 
correspond to the pseudo facets that do and do not produce accurate 
actual facet estimates, respectively. 

Note that the algorithm fails to produce accurate estimates for 
points that have 1 e albedo values ( p  > 0.75) and large tilt angles 
(6. > 70 degrees)?or points in this range (large dots), the algorithm 
does in fact converge, but it converges to other facet vectors that lie in 
between the pseudo facet and the actual facet on the vector C (Figure 
6b). This results from the fact that facets with two different tilt angles 
and two different albedo values can produce the same pseudo facets! 
This is also illustrated in the convergence map for the pseudo facets 
(Figure 8b) where constant albedo curves intersect one another, thus 
implying that two different actual facets can result in the same pseudo 
facet. Note that each facet separation distance. r. results in a different 
set of convergence maps. 
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5.2 General Case 

Convergence for the general case of surfaces of arbitrary shape (more 
than two facets) and with varying reflectance is very difficult to prove. 
This is because the algorithm iterates on a system of equations that are 
non-linear functions of the shape and reflectance of the surface. Hence, 
the most convincing evidence of the stability and accuracy of the algo- 
rithm lies in the the simulation results of the previous section and the 
experimental results to follow. However, fairly convincing qualitative 
statements may be made regarding the general behavior of the algo- 
rithm. The algorithm uses the pseudo shape and reflectance as an initial 
estimate of the actual shape and reflectance. Since the pseudo shape is 
less concave than, but yet resembles in shape to, the actual shape, the 
interreflections produced by the pseudo shape are less than in the case of 
the actual surface but yet greater than zero. Modeling of these non-zero 
interreflections is expected to produce a better estimate of shape and 
reflectance in the next iteration. As the shape and reflectance estimates 
approach the actual ones, the pseudo shape and reflectance are almost 
perfectly accounted for and the algorithm begins to converge. Just as 
111 the two-facet case, two different surface shapes with two different 
albedo functions can produce the same pseudo shape. However, we are 
using both the pseudo shape as well as the pseudo reflectance together 
to estimate actual shape and reflectance. Hence, the probability of the 
algorithm converging at intermediate shape estimates is small though 
not zero. In general, however, lower albedo values produce lesser in- 
terreflections and therefore higher likelihood of convergence. Further, 
in all our simulations and experiments we confine ourselves to facets 
whose tilt angle are less than 70 degrees. This is because larger tilt 
angles produce larger facet areas that result in poorer approximations 
to the interreflection kemel. In some cases, such poor approximations 
can lead to instability; the algorithm may produce grossly erroneous 
intermediate estimates that finally lead to divergence, rather than con- 
vergence, of shape and reflectance. 

6 Experimental Results 

We have conducted experiments to demonstrate the accuracy and prac- 
tical feasibility of the shape and reflectance recovery algorithm. The 
algorithm was applied to general three-dimensional surfaces as well as 
surfaces that have translational symmetry. A 512x480 CCD camera 
was used to view the surfaces. Three incandescent lamps were used to 
illuminate the surfaces from three different directions to extract surface 
orientation3 and reflectance information by photometric stereo. The 
brightness of each source was determined by a calibration procedure 
that uses flat surfaces of known albedo values. 

6.1 Translational Symmetry Case 

Figure 9 shows results for objects with translational symmetry in a 
single direction. Each object is painted with dull white paint to give 
it a matte (Lambertian-like) reflectance. In each case, a photo of the 
object is shown and the horizontal line in the photo represents the 
surface points that were used by the recovery algorithm. The cross- 
sectional shape (actual shape) of the surface was determined from the 
known shape of the object. Due to the two-dimensional nature of 
the problem, only two light source directions were needed to extract 
pseudo shape and reflectance estimates by photometric stereo. The 
extracted pseudo albedo value of each facet is represented by a circle 
in the reflectance graph. The discrete two-dimensional kemel for the 
translational symmetry case (Appendix A.2) was used by the recovery 
algorithm to obtain the actual shape and reflectance from the pseudo 
ones. Intermediate shape estimates are numbered according to the 
iterationthat produced them. For both the surfaces in Figure 9, the shape 
estimates converge to reasonably accurate estimates within 7iterations 
of the algorithm. For each surface, the mean orientation error 6, (section 
4.2) was computed after 25 iterations and was found to be less than 2.5 
degrees. For both surfaces, the psuedo albedo values are greater than 
unity in the areas of maximum concavity. Note that the albedo estimates 
converge simultaneously with the orientation estimates. 

For convex surfaces the pseudo shape and reflectance estimates 
are equal to the actual ones. Since no two facets on a convex surface are 
visible to one another (Vim = 0), the algorithm converges at the pseudo 
shape and reflectance estimates [lo]. 
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6.2 General Case 
Figures 10 shows a photo of an inverted pyramid. Again, the surface 
is painted and has a matte finish . In this case, three light source 
directions were used to extract pseudo shape and reflectance estimates 
and the general form of the discrete kemel (equation 17) was used by the 
recovery algorithm to extract the actual shape and reflectance. Figures 
l l a  and I Id illustrate isometric and front views of the structure of the 
inverted pyramid in Figure 10. Figures 1 l b  and 1 le show the isometric 
and front views of the pseudo shape of the inverted pyramid extracted by 
photometric stereo. Figures 1 IC and 1 If show isometric and front views 
of the shape produced by the recovery algorithm after 10 iterations. The 
convergence graph for the inverted pyramid is shown in Figure 12. The 
shape estimate converges in about 7 iterations with a mean orientation 
e m r  8; w 3 degrees. 

6.3 Discussion 
The surfaces used in the experiments have high albedo values (approx- 
imately 0.9) and thus exhibit strong interreflections. Though surface 
albedo was not known a-priori, the algorithm was successful in extract- 
ing fairly accurate estimates of shape and reflectance from the pseudo 
estimates. Emrs in the recovered shape and reflectance estimates are 
caused by the following factors: 

The presence of noise in the images used by the shape-from- 
intensity method to extract pseudo shape and reflectance esti- 
mates. 
The Lambertian assumption. Though all surfaces used in the ex- 
periments have a matte finish, they are not perfectly Lambertian 
in reflectance. Since the interreflection model used by the recov- 
ery algorithm is based on the Lambertian assumption, e m r s  in 
the shape and reflectance estimates are expected. 

For facets that are very close to one another and are oriented such 
that they exhibit strong interreflections, the discrete kemel does 
not provide a good approximation to the actual kemel. For this 
reason, errors in recovered shape are maximum in areas where 
the surface is discontinuous in orientation (e.g. edge in Figure 9b). 

In our experiments, we have confined ourselves to surface orientations 
with tilt angles that are less that 70 degrees with respect to the viewing 
direction. As we pointed out earlier, large tilt angles would result in 
large facet areas for which the kemel given by equation 17 does not 
provide reasonable approximations. 

7 Conclusion 

We have presented in this paper an algorithm for recovering the 
shape and reflectance of Lambertian surfaces in the presence of 
interreflections. The surfaces may be of arbitrary but continuous 
shape, and with possibly varying and unknown reflectance. 

The actual shape and reflectance are recovered from the pseudo 
shape and pseudo reflectance estimated by a local shape-from- 
intensity method. The recovery algorithm may therefore be used 
in conjunction with any shape-from-intensity method that is ca- 
pable of producing accurate pseudo shape and pseudo reflectance 
estimates. Thus, the algorithm enhances the capability, and hence 
also the utility, of existing shape-from-intensity methods. 

We have analyzed in detail the convergence properties of the re- 
covery algorithm for the special case of two planar facets. Qual- 
itative arguments that support convergence for the general case 
are also given. 

We have included several simulation results as well as experi- 
mental results to demonstrate the robustness and accuracy of the 
algorithm. 

In this paper, we have restricted ourselves to Lambertian sur- 
faces. As the appearance of a Lambertian surface is vantage indepen- 
dent, we are able to model interreflections in a compact form. For 
surfaces with other reflectance properties, however, surface radiance is 
dependent on the viewing direction. In such cases, both the forward 
and the inverse interreflection problems are considerably more difficult 
to solve. As future research we are interested in extending our analysis 
to specular surfaces, and subsequently, to surfaces with more generic 
reflectance characteristics. 
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Figure 10: Photo of an inverted pyramid. 
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A Appendix 

A . l  Radiometric Definitions 

source 

---: -- 
Figure 13: Basic geometry used to define radiometric terms. 

We present definitions of radiometric terms that are useful in the analysis 
of interreflections. Detailed derivations and descriptions of these terms 
are given by Nicodemus et al. 1111. Figure 13 shows a surface element 
illuminated by a source of light. The irradiance E of the surface is 
defined as the incident flux density Oylm-’): 

where dbi is the flux incident on the area aX of the surface element. 
The radiance L of the surface is defmed as the flux emitted per unit 
fore-shortened area per unit solid angle (W/m-’.sr-’). The surface 
radiance in the direction (e,, 4,) is determined as: 

d2 @l L =  aX coser dw, 

where dzb ,  is the flux radiated within the solid angle dw,. The Bi- 
Directional Reflectance Distribution Function (BRDF) of a surface is a 
measure of how bright the surface appears when viewed from a given 
direction and illuminated from another given direction. The BRDF is 
determined as: 

(30) 
dL 

f = -  
dE 

A.2 Kernel for Single Translational Symmetry Case 

Figure 14: Cross-sectional view of two planar facets that are infinite in 
the x direction. 

Forsyth and Zisserman 121 have derived the interreflection kemel for 
the special case two planar facets that have translational symmetry in 
a single direction. Figure 14 shows a cross-sectional view of two such 
facets that are infinite in the x direction. The kernel Kq is derived [2] 
by integrating along the x and y directions the contribution of all points 
on facet j to the radiance of a point on the facet i: 

c + U * C O S f f  K.. = -- I($ + 2cu*cosf f  + u * y  

where a is the angle between the surface normal vectors of the two 
facets and the parameter U* respresents the cross-sectional length of 
the facet j .  Since both facets are infinite in length, the same kernel 
is valid for all points on the facet i. Therefore, under the translation 
symmetry assumption, the kemel is two-dimensional in that it need only 
be evaluated for points along the cross-section of the surface. Note that 
the above kemel is valid only for surfaces that are infinite in the direction 
of symmetry. However, the kemel serves as a good approximation [2] 
for points that lie around the middle of a surface that is long though 
finite in the direction of symmetry. 
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