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Aperture Evaluation for Defocus Deblurring and Extended Depth of Field

Changyin Zhou, Shree K. Nayar

Abstract—For a given camera setting, scene points that lie outside of depth of field (DOF) will appear defocused (or blurred).
Defocus causes a loss in image details. To recover details from a defocused region, deblurring techniques must be employed.
It is well known that deblurring quality is closely related to the defocus kernel or point-spread-function (PSF), whose shape is
largely determined by the aperture pattern of the camera. In this paper, we propose a comprehensive framework of aperture
evaluation for the purpose of defocus deblurring, which takes the effects of image noise, deblurring algorithm, and the structure
of natural images into account. By using the derived evaluation criterion, we are able to find the optimal coded aperture patterns.
Extensive simulations and experiments are then conducted to compare the optimized coded apertures with previously proposed
ones.
The proposed framework for aperture evaluation is further extended to evaluate and optimize extended depth of field (EDOF)
cameras. EDOF cameras (e.g., focal sweep and wavefront coding camera) are designed to produce PSFs that are less sensitive
to depth variation, so that a single PSF can be used to deblur captured images without knowledge of scene depth. The deblurring
quality for EDOF cameras depends on the parameters of the camera and the PSF used for deconvolution. We show that our
evaluation criterion can be used to find both optimal values for the camera parameters and an optimal PSF for deblurring.

Index Terms—Computational Photography, Defocus Deblurring, Extended Depth of Field, Coded Aperture, Wiener Deconvolu-
tion
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1 INTRODUCTION

Defocus is a common phenomenon in photography. For a
given camera setting, while scene points that lie on the
focal plane of the camera lens will be well focused, points
located away from the focal plane will appear increasingly
defocused (or blurred). For a simple fronto-planar object,
its out-of-focus image can be expressed as

f = f0 ⊗ k + η , (1)

where f0 is the focused image, k is the defocus function
or point-spread-function (PSF) largely determined by the
aperture pattern, and η is the image noise. In frequency
domain, we have

F = F0 ·K + ζ, (2)

where F0,K and ζ are the discrete Fourier transforms of
f0, k, and η, respectively. Defocus causes a loss in image
details and is often undesired. The only way to recover
scene details in defocused areas is by using deblurring
techniques, which is to estimate F0 from F and K.

The quality of the deblurred image is closely related to
the defocus function K. For example, defocus deblurring
is a severely ill-posed problem for a conventional camera
with a circular aperture, whose defocus function is known
to not only greatly attenuate high frequencies but also have
many zero-crossings in frequency domain. This has two
adverse effects in the context of defocus deblurring - some
frequencies simply cannot be recovered and image noise is
greatly exaggerated.

Intuitively, a good defocus function should be broad-
band in the frequency domain. Based on this intuition,
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people have proposed a variety of coded apertures for better
defocus deblurring (e.g., [1] [2] [3] [4] [5]). However, the
exact connection between the defocus function and the final
deblurring quality is absent in the literature. In this paper,
the deblurring quality is defined as the L2 reconstruction
error between the deblurred image and the ground truth
focused image. Based on this definition, we propose a
comprehensive framework for aperture evaluation, which
predicts the expected reconstruction error by taking effects
of image noise, the structure of natural images, and deblur-
ring process into account.

We use our framework to derive criteria for aperture eval-
uation for two important scenarios. In Scenario 1, precise
scene depths are given (for example, by user interaction)
and therefore the exact defocus function is determined by
the aperture pattern alone. In Scenario 2, scene depths
are unknown, however the camera is designed to produce
depth-invariant PSFs so that a single PSF can be used to
deconvolve the captured image without knowledge of scene
depth [6] [7] [8]. This technique is often referred to as
Extended Depth of Field (EDOF).

In the first scenario, we derive a criterion that can be
used to measure the amount of deblurring artifacts that are
caused by the presence of image noise. Our analysis shows
that the optimality of aperture patterns greatly depends on
the image noise level. This implies that the search for
an optimal aperture pattern should take image noise into
account. Our optimization shows that the optimized pattern
of a coded aperture appears random at a low noise level,
and becomes more structured as the noise level increases.

In Figure 1, we use the conventional circular aperture as
a benchmark and plot the relative score of three different
coded apertures, including a random pattern, one pattern
optimized for noise levels σ = 0.02, P0.02, and one pattern
optimized for σ = 0.001, P0.001. We can see that the
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Fig. 1. Aperture evaluation at different noise levels.
The S − σ curves of four aperture patterns, including a
circular pattern, a random pattern, one of our patterns
optimized for noise level 0.02, and one of our optimized
patterns optimized for noise level 0.001, are shown in
black, green, blue and red lines, respectively. We can
see that the optimality of patterns varies greatly with
noise level.

relative optimality of aperture patterns varies significantly
with noise level. P0.001 is best when the noise level is low;
and when the noise level is extremely high (e.g., in a low
light condition), the conventional circular pattern outper-
forms the other three patterns – the amount of received light
becomes more important than how the light is distributed
in this case.

To conduct experiments, we printed several aperture
patterns as high resolution (1 micron) photomasks and
inserted them into Canon EF 50mm f/1.8 lenses. These
lenses were then attached to a Canon EOS 20D camera and
used to capture images of real scenes. For example, Figure
2 compares the deblurring results for a CZP resolution chart
obtained using one of our optimized coded apertures and
a circular aperture. We have also acquired several severely
defocused images of complex scenes using the lens with our
optimal aperture and applied defocus deblurring to recover
scene details. This is discussed further in Section 6.

In Section 7 and 8, we apply our framework to evaluate
the deblurring quality of two different EDOF cameras. The
deblurring quality of EDOF cameras not only depends on
the quality of each individual PSF, but also depends on
the similarity between PSFs at different depths. Although
there may be some variation in PSF shape as a function
of depth, a single PSF must be chosen for deblurring.
Improper choice of the PSF may lead to severe deblurring
artifacts. For simplicity, the PSF at the center of the depth
range is often used for deblurring. In this paper we derive
a closed form solution for a PSF that is optimal for
deblurring captured EDOF images. Deblurring quality can
be improved significantly by using the optimal PSF.

In Section 7, we derive a closed form solution for
the evaluation criteria of an EDOF camera. This criterion

c

(b) Circular Aperture (c) Proposed Aperture

(a) Focused Image (Ground Truth)

Fig. 2. Comparison between deblurring of a CZP reso-
lution chart using a circular aperture and our optimized
coded aperture. (a) A focused image. (b) Top severely
defocused image was captured using a circular (con-
ventional) aperture and bottom image is the result of
the deblurring. (c) Top image was captured using our
optimized aperture and bottom image is the result of
deblurring. The apertures used are shown in the top-
left corners of the captured images. Both the captured
images were taken under the same focus setting and
the same exposure time (hence the darker image in
(c)). The deblurred image in (c) is clearly of higher
quality than the one in (b) (also see the zoomed inset
images).

accounts for both variation of the PSF as a function of
depth and the optimality of the PSF used for deblurring.
As in the first scenario, the evaluation score given by
this criterion predicts the expected reconstruction error of
defocus deblurring. There have been attempts to quantify
the depth invariance of EDOF cameras in the literature,
such as using the Hilbert-space angle between the Fourier
transforms of PSFs at varying depths [9]; however, these
intuitive measurements do not take into consideration the
effect of noise on the deblurring process.

In Section 8, we use the derived criterion from Section
7 to optimize camera parameters for two popular EDOF
techniques, focal sweep and wavefront coding. For a focal
sweep camera, the range of focal sweep is an important
parameter that represents a trade-off between the quality of
each single PSF and depth-invariance. A larger focal sweep
range results in a PSF that is more depth invariant, but it
also results in greater attenuation at high-frequencies, which
reduces the quality of each single PSF. Our optimization



3

Without Optimization Optimized Without Optimization Optimized
(a) Wavefront Coding (b) Focal Sweep

D
ep

th
s 

  =
 S

/2
0

s 
  =

 0
0

Fig. 3. Optimizing EDOF techniques for better quality of recovered EDOF images. (a) left: the recovered EDOF
image and close-ups of wavefront coding where the middle PSF is used for deconvolution; right: the recovered
EDOF images using the optimal PSF for deconvolution. (b) left: the recovered EDOF image and close-ups of
focal sweep method where the focus sweeps right over the scene range; right: the recovered EDOF image and
close-ups when the sweep range is optimized.

shows that the range that maximizes deblurring quality is
a factor of 1.2 times the depth range of the scene. For a
wavefront coding technique, the coefficient α of the cubic
phase surface function plays a similar role as the sweep
range in focal sweep camera. Our optimization confirms
that the commonly used value for this parameter is close to
optimal. As shown in Figure 3, the quality of the recovered
EDOF images of wavefront coding and focal sweep is
greatly improved after PSF and parameter optimization.

2 RELATED WORK

This paper is an extended version of a paper that appears in
[10]. In [10], a criterion has been derived to evaluate PSFs
for defocus deblurring and used to solve for different opti-
mal coded apertures at different noise levels. More analyses
on the effects of image noise and blur size are given in this
paper, which lead to several interesting conclusions on the
selection of aperture patterns for defocus deblurring. Fur-
thermore, we extend the framework of aperture evaluation
to include the analysis of EDOF cameras. We demonstrate
that the derived criterion can be used to guide parameter
selection and PSF optimization for various EDOF cameras,
and significantly improve the quality of recovered EDOF
images.

2.1 Coded Aperture for Defocus Deblurring

In the early 1960s, coded aperture techniques were intro-
duced in the field of high energy astronomy as a novel way
of improving signal-to-noise ratio for lensless imaging of
x-ray and γ-ray sources [11]. In subsequent decades, many
different aperture patterns were proposed, including the
popular multiplexed uniformly redundant array (MURA)

[12]. Unfortunately, the coded apertures designed for lens-
less imaging are not optimal to use within lenses for
defocus deblurring, as observed in [5].

Also in the 1960s, researchers in the field of optics
began developing unconventional apertures to capture high
frequencies with less attenuation. Binary aperture patterns
[1] [3] as well as continuous ones [2] [4] were proposed
and analyzed in detail.

The patterns proposed in the optics community were
chosen in an ad-hoc fashion (based on intuitions) and
then analyzed in details in terms of their optical transfer
functions. It is only in the last few years that the design
of apertures for defocus deblurring has been posed as an
optimization problem. In particular, Veeraraghavan et al. [5]
performed gradient descent search to improve the MURA
pattern [12] and then binarized the resulting pattern. Due
to the large search space associated with the optimization,
they restricted themselves to binary patterns with 7 × 7
cells. The criterion used in [5] maximizes the minimum of
the power spectrum of the aperture pattern. In our work,
we show that apertures with higher performance can be
achieved by taking image noise and image statistics into
consideration.

2.2 Extended Depth of Field
At present, there are mainly two competing EDOF tech-
niques: spatial modulation of the aperture using wavefront
coding; and temporal modulation using focal sweep.

The wavefront coding technique was introduced by
Dowski and Cathy [13], who place a cubic phase plate
in the pupil plane of a camera system. They show ana-
lytically that a camera with a cubic phase plate produces
a PSF that is approximately depth invariant and therefore
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one can recover a focus image using a spatially-invariant
deconvolution. Several additional phase plate designs for
extended DOF are given in [14] [15].

Focal sweep cameras produce a depth invariant PSF by
sweeping either the sensor, lens, or object along the optical
axis during exposure [6] [7]. The range of focal sweep is
usually set to cover the whole depth range of the scene,
so that each object is instantaneously in focus at one point
during exposure.

In this paper, we use our derived evaluation criterion
to optimize the parameters in focal sweep and cubic phase
plate cameras, and solve for the optimal PSF for deblurring.

2.3 Aperture Design for Other Purposes
Aperture pattern design has been an important topic not
only for defocus deblurring and extended depth of field,
but also for depth from defocus, light field acquisition, as
well as a variety of other techniques. In [16], the aperture
pattern is optimized to estimate depth from defocus using a
single image. In this paper we do not address the problem
of depth estimation. The authors in [16] show that aperture
patterns with more zero crossings in the frequency domain
are better for depth estimation. Since the pattern used in
this paper is also used for defocus deblurring, we include
it in our comparisons. However, to be fair, it should be
noted that their pattern was not designed to be optimal for
defocus deblurring.

Zhou et al. [17] derived an aperture evaluation criterion
for depth from defocus from two images. The criterion
is then optimized using a genetic algorithm and gradient
descent search to arrive at a pair of optimal coded apertures.
In addition, these two coded apertures are found to com-
plement each other in the frequency domain. This property
enables them to not only recover depth with greater fidelity
but also obtain a high quality all-focused image from the
two captured images.

Raskar et al. [18] proposed a novel broad-band temporal
(1-D) exposure coding pattern for the purpose of motion
deblurring. As in [5], they use a simple evaluation criteria
that minimizes the variance of the magnitude of the Fourier
spectrum of the pattern. They found a near-optimal solution
by randomly evaluating 3 × 106 codes within a space of
about 1.2 × 1014 solutions. Liang et al. [19] proposed to
take tens of images by using a set of Hadamard-like coded
aperture patterns for high-quality light field acquisition.

Many different techniques [20] [21] [22] [19] have been
proposed to implement unconventional aperture patterns,
including liquid crystal and other mechanical or optical
methods.

3 CRITERION FOR APERTURE QUALITY:
DEFOCUS DEBLURRING

3.1 Formulating Defocus Deblurring
Given a defocused image F and known PSF K, the problem
of defocus deblurring is to compute a deblurred image F̂0

that minimizes the reconstruction error ‖F0−F̂0‖. It is well

known that if η is Gaussian white noise G(0, σ2) and the
reconstruction error ‖F0 − F̂0‖ is defined as the L2 norm,
the Wiener deconvolution is the optimal linear algorithm
for defocus deblurring:

F̂0 =
F · K̄

|K|2 + |C|2
, (3)

where K̄ is the complex conjugate of K, |K|2 = K · K̄,
and |C|2 = C · C̄. Furthermore, the optimal |C|2 is known
to be the matrix of Noise-to-Signal Ratio (NSR), |σ/F0|2.

Since F0 is unknown, people usually have no access
to the exact NSR matrix, so that they often replace |C|2
with a single scale parameter λ or a simplified matrix like
λ · (|Gx|2 + |Gy|2), where Gx and Gy are the Fourier
transforms of the spatial derivative filters in the x-axis and
y-axis. However, these simplifications not only make the
deconvolution less optimal, but more importantly, introduce
a difficult parameter selection problem.

We can optimize C to minimize the expected recon-
struction error ‖F0 − F̂0‖2 by making use of the 1/f
law of natural images and get |C|2 = σ2/A, where
A(ξ) =

∫
|F0(ξ)|2dµ(F0) is the averaged power spectra

of natural images. Therefore, by substituting |C|2 = σ2/A
into Equation 3, we have

F̂0 =
F · K̄

|K|2 + σ2/A
. (4)

In practice, A can be estimated by simply averaging the
power spectra of several natural images. Since the noise
level σ is determined by the camera model and its ISO
(or gain) setting, this variant of Wiener deconvolution
algorithm is parameter-free.

This is a variant of Wiener deconvolution augmented by
using 1/f law of natural images. Although some people
have already been using this algorithm in practice [23],
we note that the significance of this algorithm is often
overlooked and many people are still using the conventional
Wiener deconvolution algorithm, in which C is set to be a
scalar number.

3.2 Evaluating an Aperture Pattern
A typical way to measure the quality of the recovered image
F̂0 is to use its L2 reconstruction error:

R = ‖F0 − F̂0‖2. (5)

From Equations 2 and 4, we can see that F̂0 is a function of
F , K, and σ, and F depends on F0, K, and ζ. Therefore,
R is actually a function of F0, K, and ζ, where ζ is the
Fourier transform of Gaussian white noise G(0, σ2) and F0

follows the 1/f law of natural images. Then, for a given
PSF K, we can compute the expectation of R as:

R(K,σ) = EF0,ζ(‖F0 − F̂0‖2) (6)

= Σ
ξ

σ2

|Kξ|2 + σ2/Aξ
, (7)

where ξ is the frequency. (See Appendix A for a detailed
derivation.) R(K,σ) predicts the deblurring quality if the
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aperture pattern K is used at a noise level σ and can be
used as a criterion to evaluate aperture patterns.

For each frequency ξ, the reconstruction error
σ2

|Kξ|2+σ2/Aξ
is approximately proportional to 1/|Kξ|2.

This gives a clear explanation of why zero-crossings in
the PSF spectrum will introduce large deblurring artifacts.
In addition, ‖Kξ‖2 falls off quickly as the frequency
increases for most aperture patterns and σ2/Aξ increases
relatively slowly. This explains why the high frequency
part of images are more vulnerable to image noise than
the low frequency part. While some other criteria such
as Σ‖Kξ‖2 could be correct conceptually, our derived
criterion is much more precise in predicting the deblurring
quality.

The effect of image noise on the deblurring quality,
which is almost completely overlooked by all previously
introduced criteria, is now well described in Equation 7.
We will show with more analyses that image noise plays a
key role in defocus deblurring and should not be ignored
in aperture evaluation and selection.

4 CODED APERTURE OPTIMIZATION

4.1 Genetic Algorithm for Aperture Optimization

We first use the derived criterion to solve for the optimal
pattern for deblurring. However, even with our concise eval-
uation criterion in Equation (7), finding the optimal aperture
pattern remains a challenging problem. While the aperture
pattern is evaluated in the frequency domain, it must satisfy
several physical constraints in spatial domain. For example,
all its transmittance values must lie between 0 and 1; and
the whole pattern should fit within the largest clear aperture
of the camera. Deriving a closed-form optimal solution that
satisfies all these constraints is difficult. We therefore resort
to a numerical search approach.

For a binary pattern of resolution N × N , the number
of possible solutions is 2N×N , making exhaustive search
impractical even for small values of N . To solve this
optimization problem, we develop a genetic algorithm [24].
Each aperture pattern k of size N × N is encoded as a
binary sequential pattern b of length N2. An aperture with
significant discontinuities will produce strong diffraction
effects. To this end, we limit the spatial resolution to be
relatively low, i.e., N = 13.

To solve this optimization problem, we develop a genetic
algorithm [24]. The process of this optimization algorithm
is described in detail in Table 1. In our implementation, the
population size in the first generation is set to S = 4000;
at each generation, M = 400 sequences are selected for
evolution; for crossover, each pair of corresponding bits
in the parent sequences are switched with a probability
of c1 = 0.2; mutation defined as bit flipping, happens at
each bit with a probability of c2 = 0.05; and the evolution
stops at the maximum number of generations, G = 80. The
best sample (which gives the lowest value of the criterion
in Equation 7, in the last generation corresponds to the
optimal aperture pattern. For a 13 × 13 pattern, a total of

TABLE 1
Genetic Algorithm for Coded Aperture Optimization
1) Initial: g = 0; randomly generate S binary sequences of

length L.
2) Repeat until g = G

a) Selection: For each sequence b, the corresponding blur function
K is computed and then evaluated by using Equation 7. Only
the best M out of S sequences are selected.

b) Repeat until the population (the number of sequences) increases
from M to S.

— Crossover: Duplicate two randomly chosen sequences
from the M sequences of Step 2.a, align them, and ex-
change each pair of corresponding bits with a probability
of c1, to obtain two new sequences.
— Mutation: for each newly generated sequence, flip each
bit with a probability c2.

c) g = g + 1.
3) Evaluate all the remaining sequences using Equation 7 and output

the best one.

* In our implementation, L = 169, S = 4000, M = 400, c1 = 0.2,
c2 = 0.05 and G = 80.

S×G = 320, 000 samples are evaluated, which takes about
20 minutes on a 4GHz PC with our implementation.

Figure 4 compares the convergence rates for the genetic
algorithm and a randomized linear search. We can see
that for the genetic algorithm R drops quickly to a small
number. To test if our optimization has converged to a ”bad”
local minimum, we repeated the optimization 10 times
with different initial populations. While randomized linear
searches always arrived at fairly different patterns, our
genetic algorithm always converged to patterns with similar
appearance. Although it is hard to prove, we believe this
implies that our algorithm yields near-optimal solutions.

As stated earlier, the optimal aperture pattern varies with
the level of image noise. We performed our optimization
using eight levels of noise; σ = 0.0001, 0.001, 0.002, 0.005,
0.008, 0.01, 0.02, to 0.03. The resulting apertures are shown
in the bottom row of Figure 7. It is interesting to note
that the optimized aperture patterns become more structured
with increase in noise.

4.2 Discussion

4.2.1 Optimized Patterns in Frequency Domain

In Figure 5, we compare the Fourier spectrum of one of our
optimized apertures (σ = 0.001) with that of the circular
pattern, and Veeraraghavan et al.’s pattern in (a), and also
compare it with other two optimized patterns (σ = 0.005
and 0.01) in (b). Though the figure only shows us a 1D slice
of the 2D Fourier spectrum, it can give us a better intuition
of how these apertures may work in out-of-focus deblurring.
Figure 5 (a) shows that the circular pattern has many zero-
crossings and greatly attenuates high frequencies, and thus
may not be suitable patterns for deblurring; and (b) shows
that the optimized pattern for small noise level tends to
cover more high frequency parts, while the one optimized
for large noise level has larger responses at low frequencies.
Larger noise level means much less recoverable information
in the high frequency part, hence the filter is optimized to
put more emphasis in the low frequency part.
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Fig. 4. Optimizing Coded Aperture Patterns Using
Genetic Algorithm. (a) Compare the convergence rates
of optimization for σ = 0.002 between our proposed
genetic algorithm (red) and a randomized linear search
algorithm (blue). Each algorithm is repeated 10 times.
(b) Compare the convergence rates for σ = 0.005. We
see that our genetic algorithm converges quickly to a
low value for aperture criterion metric. In addition, the
results of different runs of the genetic algorithm are
quite similar, indicating that they are all likely close to
the optimum aperture. (c) shows the eight optimized
patterns for noise levels from 0.0001 to 0.03. The
patterns become more structured as the noise level
increases.

4.2.2 Noise Level and Blur Size

The optimization confirms that there are different optimal
aperture patterns at different noise levels. The optimized
patterns become more structured as the noise level in-
creases. To better understand how the optimality of each
pattern K changes with noise levels, we study the relative
score S(K,σ) = R(K,σ)/R(Kc, σ), where Kc is the
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Fig. 5. 1D slices of Fourier transforms of different
patterns. (a) Circular pattern (black), Veeraraghavan et
al.’s pattern (blue), and the optimized pattern for σ =
0.001 (red). (b) The optimized patterns for σ = 0.001
(red), σ = 0.005 (green), and σ = 0.01 (blue).

conventional circular pattern. In Figure 1, we show the
S−σ curves of four different aperture patterns (a wide-open
circular pattern, a random pattern, our optimized pattern for
noise levels σ = 0.02 P0.02, and our optimized pattern for
σ = 0.001 P0.001). We can see that the relative optimality
of aperture patterns varies significantly with noise level.
P0.001 is the best when the noise level is low; and when
the noise level is extremely high, the conventional circular
pattern outperforms all the other three patterns.

For coded apertures, the scale (or blur size) of PSF
varies with depth. As far as the deblurring quality is
concerned, increasing the blur size of a PSF by a factor
m is approximately equivalent to increasing the noise level
by m (see Appendix B for a proof). Therefore, the R score
is approximately constant when the production of the blur
size d0 and the noise level σ is given. Figure 6 demonstrates
a map of computed R score of a circular pattern as the blur
size ranges from 2 to 40 pixels and noise level σ ranges
from 0.0005 to 0.02. Increasing the PSF scale or increasing
the noise level has similar effects on the reconstruction
error.

The optimality of aperture patterns varies with noise and
blur size. This suggests that the image noise level and the
most likely blur size should be considered in the selection
of an aperture pattern for a specific imaging system.

5 SIMULATION
Before conducting real experiments, we first performed ex-
tensive simulations to verify the correctness of our aperture
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TABLE 2
Performance comparison of 16 aperture patterns for eight noise levels.

Image Noise Level σPatterns 0.0001 0.0005 0.001 0.002 0.005 0.008 0.01 0.02
Circular 0.0234 0.0375 0.0439 0.0503 0.0587 0.0631 0.0652 0.0717
Annular 0.0194 0.0334 0.0405 0.0478 0.0573 0.0622 0.0645 0.0716
Multi-Annular 0.0141 0.0274 0.0346 0.0426 0.0537 0.0598 0.0627 0.0719
Random 0.0157 0.0294 0.0368 0.0448 0.0558 0.0616 0.0645 0.0731
MURA 0.0153 0.0279 0.0345 0.0419 0.0531 0.0594 0.0624 0.0719
Image pattern 0.0128 0.0252 0.0324 0.0403 0.0513 0.057 0.0597 0.0681
Levin 0.0181 0.0316 0.0394 0.0486 0.0619 0.0686 0.0716 0.0798
Veeraraghavan 0.0164 0.0282 0.0346 0.0419 0.0527 0.0586 0.0614 0.0703
Optimized Patterns for:
σ = 0.0001 0.0118 0.0235 0.0313 0.0407 0.0544 0.0613 0.0644 0.0732
σ = 0.001 0.0123 0.024 0.0309 0.039 0.0513 0.0581 0.0614 0.0713
σ = 0.002 0.0135 0.0261 0.0327 0.0398 0.0501 0.0561 0.059 0.0686
σ = 0.005 0.0138 0.0269 0.034 0.0415 0.0513 0.0561 0.0585 0.0663
σ = 0.008 0.014 0.0276 0.035 0.0425 0.052 0.0566 0.0588 0.0659
σ = 0.01 0.0144 0.028 0.0353 0.043 0.0527 0.0572 0.0593 0.0659
σ = 0.02 0.0151 0.029 0.0366 0.0447 0.0548 0.0593 0.0612 0.0671
σ = 0.03 0.0157 0.0301 0.0377 0.0454 0.055 0.0594 0.0614 0.0674
* The best performer for each noise level is shown in bold.
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Fig. 6. Evaluation score as a function of the noise level
σ and PSF scale B. The map of evaluation scores R
of a circular pattern is represented in a color coding
scheme for the blur size B ranging from 2 to 40 pixels,
and noise level σ ranging from 0.005 to 0.02. we can
see that the score is approximately constant for any
given multiplication of B and σ.

evaluation criterion and optimization algorithm. For this, we
used the 16 aperture patterns including the eight optimized
patterns shown in Figure 5 (c) and eight other patterns
shown in Figure 7. we have also used an “image pattern,”
which is a binarized version of the well-known Lena image.
The performances of these 16 apertures were evaluated for
eight levels of image noise via simulation using a set of 10
natural images.

For each aperture pattern k and each level of image
noise σ, we simulate the defocus process using Equation
1, apply defocus deblurring using Equation 4, and get an
estimate f̂0 of the focused image f0. Using each deblurred
image, the quality of an aperture pattern is measured as
(‖f0 − f̂0‖2)1/2. To make this measurement more reliable,

   Circular             Annular       Multi-Annular        Random

   MURA        Image Pattern          Levin      Veeraraghavan

(a) Eight other patterns for comparison

(b) Ten natural images used in simulation

Fig. 7. (a) Eight other patterns to be evaluated.
From left-top to right-bottom: circular pattern, annular
pattern, multi-annular pattern, random pattern, MURA
pattern [12], Image pattern, Levin et al.’s pattern [16],
and Veeraraghavan et al.’s pattern [5]. (b) Ten natural
images that are used in our simulation.

we repeat the simulation on our 10 natural images and take
the average. These results are listed in Table 2 for the 16
aperture patterns and 8 levels of image noise.

Our optimized patterns perform best across all levels
of noise, and the improvement is more significant when
the noise level is low. On the other hand, the circular
(conventional) aperture is close to optimal when the noise
level is very high. While there are different optimal aper-
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1.
2m

   
   

1.
5m

(a) Photomasks        (b) The lenses

(c) The Captured PSFs

Fig. 8. (a) Photomask sheet with many different aper-
ture patterns. (b) One unmodified lens and four lenses
with patterns inserted. (c) Top row shows calibrated
PSFs for a depth of 120cm from the lens, and bottom
row shows calibrated PSFs for a depth of 150cm. These
PSFs, from left to right, correspond to circular pattern,
image pattern, Levin et al., Veeraraghavan et al., and
one of our optimized patterns.

tures for different levels of image noise, we want a single
aperture to use for real experiments in a variety of imaging
conditions. We pick the optimized pattern for σ = 0.001
for its good performance in a wide range of noise levels
from σ = 0.0001 to 0.01.

6 EXPERIMENTS WITH REAL APERTURES

As shown in Figure 8(a), we printed our optimized aperture
patterns as well as several other patterns as a single high
resolution (1 micron) photomask sheet. To experiment with
a specific aperture pattern, we cut it out of the photomask
sheet and inserted it into a Canon EF 50mm f/1.8 lens.
In Figure 8(b), we show 4 lenses with different apertures
(image pattern, Levin et al., Veeraraghavan et al, and
one of our optimized patterns) inserted in them, and one
unmodified (circular aperture) lens. Images of real scenes
were captured by attaching these lenses to a Canon EOS
20D camera.

As previously mentioned, we choose the pattern that
is optimized for σ = 0.001. This pattern exhibits high
performance over a wide range of noise levels in the
simulation. In addition, this Canon EF lens was found to
produce some severe optical aberrations when operating
with a fully open aperture (f/1.8). We therefore conducted
our experiments with the lenses stopped down to f/2.2.

To calibrate the true PSF of each of the 5 apertures,
the camera focus was set to 1.0m; an array of point
light sources was moved from 1.0m to 2.0m with 10cm

increments; and an image was captured for each position.
Each defocused image of a point source was deconvolved
using a calibrated focused image of the source. This gave
us PSF estimates for each depth (source plane position)
and several locations in the image. Since our lenses do
not perfectly obey the thin lens model, the PSF was found
to vary slightly over the image. In Figure 8(c-g), two
calibrated PSFs (for depths of 120cm and 150cm) are
shown for each pattern. These PSFs correspond to the
center of the image.

6.1 Comparison Results using Test Scenes
In our first experiment, we placed a CZP resolution chart
at the distance of 150cm from the lens, and capture images
using the five different apertures. To be fair, the same
exposure time was used for all the acquisitions. The five
captured images and their corresponding deblurred results
are shown in Figures 2 and 9. Notice that the captured
images have different brightness levels as the apertures
obstruct different amounts of light. The resulting brightness
drop (compared to the circular aperture) for the image
pattern, Levin et al., Veeraraghavan et al., and our optimized
pattern are 52%, 48%, 35%, and 57%, respectively.

Note that our optimized pattern gives the sharpest de-
blurred image with least artifacts and image noise. We
have conducted a quantitative analysis to compare the
performances of the five apertures. We carefully aligned
all the deblurred images to the focused image with sub-
pixel accuracy, and computed their residual errors. The
residual errors are then analyzed in frequency domain. In
Figure 9(d), we plot the cumulative energy of the residual
error from low to high frequency. The image pattern, Levin
et al., and especially Veeraraghavan et al., show large
improvements over the circular aperture. Our optimized
aperture is seen to produce the lowest residual error with
about 30% improvement over Veeraraghavan et al. (which
performs the best among the rest).

6.2 Deblurring Results for Complex Scenes
We have used the lens with our optimized aperture pattern
to capture several complex real scenes with severely defo-
cused regions (see Figure 10). We then applied deblurring
to the defocused regions. Deblurring of a region requires
prior knowledge of its depth. In all our examples, the
user interactively selected the depth that produced the most
appealing deblurring results. This is made possible by the
fact that the deblurring algorithm described in Section
3.1 is very fast and requires no parameter selection. For
a 1024 × 768 image, our Matlab implementation of the
algorithm takes only 30 seconds to test 20 depths. In
contrast, other deblurring algorithms that use sparse image
priors can take 30 mins for a single depth, not to mention
the time needed to adjust parameters.

Figures 10(a) and (b) show captured images (left) for
which the camera was focused on the foreground ob-
ject, making the background (poster in (a), and building
and pedestrians in (b)) severely defocused. To deblur the
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  8

   
   

   
12

   
   

   
16

(g) Cumulative Residual Energy

(a) Ground Truth (c) The optimized coded aperture

(d) Image Pattern

(e) Levin’s Pattern

(f) Veeraraghavan’s Pattern

(b) Conventional Circular Aperture

Fig. 9. Comparison between deblurring of a CZP resolution chart using different apertures. (a) A focused image.
(b) The captured and deblurred images using a conventional circular aperture. (c-f) The left shows captured
(defocused) images and the right shows the deblurred images, for four different aperture patterns, including one
of our optimized patterns, an image pattern, Levin’s pattern, and Veeraraghavan’s pattern. Both the captured
images were taken under the same focus setting and the same exposure time. The deblurred image in (c) is
clearly of higher quality than the ones in (b, d-f). (g) For each aperture, the cumulative energy of the residual
error between the ground truth and deblurred images is plotted as a function of frequency.

background, we first segmented out the foreground region,
filled the resulting hole using inpainting, and then applied
deblurring using 40 different depths. The best deblurred
result is chosen and merged with the foreground. Figure
10(c) shows a traffic scene where all the objects are out
of focus. In this case, the final result was obtained using
four depth layers. Although some ringing artifacts can be
seen in our deblurred images, a remarkable amount of
details are recovered in all cases. Please note the defocus
in our experiments is much more severe than that in most
other related works. For example, the recovered telephone
number and taxi number in Figure 10(c) are virtually
invisible in the captured image.

7 CRITERION FOR APERTURE QUALITY:
EXTENDED DEPTH OF FIELD

Extended depth of field (EDOF) cameras produce a depth-
invariant PSF so that a single PSF can be used to deblur
captured images without prior knowledge of scene depth.
However, even for an EDOF camera, the PSF exhibits some
variations with depth, and a single PSF must be chosen
(usually the one at the middle depth) to deconvolve the
image. In this scenario, the deblurring quality depends on
two factors: the optimality of the PSF at each depth, which
can be measured using our derived criterion (Equation 7),
and the variation of PSF as a function of depth.
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(a) Indoor Scene

(c) Traffic Scene

(b) Pedestrian Scene

Captured Recovered

Captured Recovered

Captured Recovered

Fig. 10. Deblurring results for three complex scenes. Left: Captured images with close-ups of several regions
which are severely defocused; Right: Deblurring results with close-ups of the corresponding regions.
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7.1 The Optimal PSF for Deconvolution
EDOF techniques use a single PSF to deconvolve the whole
image. However, what is the optimal PSF to deconvolve
with? To our best knowledge, this is a question that has
never been answered.

Let us suppose {K1,K2, . . . ,Kn} are n PSFs (in the
Fourier domain) of an arbitrary EDOF camera at n different
depths {d1, d2, . . . , dn}, and a single PSF M will be used to
deconvolve any captured image. For an arbitrary depth di,
the quality of deblurring result using M can be measured by
the L2 norm of the residual between the deblurring image
F̂0 and the ground truth image F0:

R(M |Ki) = E
F0,ς
‖F̂0 − F0‖

= Σ
ξ

[
A · |Ki −M |2

|M |2 + |C|2
+
σ2 · (K2

i −M2)

(|M |2 + |C|2)2
+

σ2

|M |2 + |C|2

]
,

(8)

where A is the average power spectrum of natural images
as defined in Section 3.1. See Appendix C for the detailed
derivation. The value R(M |Ki) measures the reconstruc-
tion error when an image is blurred with kernel Ki and
then deconvolved with kernel M . The two first terms of
Equation 8 can also be regarded as the dissimilarity between
two PSFs Ki and M , and is equal to zero when Ki = M ;
and the last term measures the quality of M with respect
to defocus deblurring as defined in Equation 7.

Then, for a natural scene, the expected reconstruction
error will be

R(M |{K1,K2, . . . ,Kn}) = Σ
i

[R(M |Ki) · P (Ki)] ,

where P (Ki) is the possibility of the scene depth being di.
For simplicity, we assume P (Ki) = 1/n and have

R(M |{K1,K2, . . . ,Kn}) =
1

n
Σni=1R(M |Ki). (9)

A better reconstruction error can be achieved if prior
knowledge of the distribution of scene depths is known.
The optimal M that minimizes the reconstruction error
R(M |{K1,K2, . . . ,Kn}) can be derived by solving ∂R

∂M =
0:

M =
Σ|Ki|2

ΣK̄i
=
S

U
, (10)

where S is the mean power spectra of all PSFs and U is
the conjugate of the mean spectra of all PSFs.

7.2 Evaluation Criterion for EDOF Cameras
For Equations 10 and 8, we can rearrange Equation 9 and
obtain

R({Ki}) = Σ
ξ

[
A · S

3/U2 · (S/U2 − 1)

(S2/U2 + C2)2
+

σ2

S2/U2 + C2

]
.

(11)
The first term describes the depth-invariance of the PSFs.
When the PSFs are identical for all depths, we have
S = M2 and therefore the first term will be zero. And
the second term describes the optimality of the optimal
PSF. This criterion R predicts the expected reconstruction
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Fig. 11. The PSF dissimilarity curves before and after
PSF and parameter optimization. For both focal sweep
and wavefront coding methods, the PSF dissimilarity
(or reconstruction error) become much smaller after
optimization.

error when using a specific EDOF camera with the optimal
deblurring PSF.

Particularly, when the noise level is very low, the first
term will dominate and the criterion can be simplified as:

R({Ki}) = Σ
ξ

[
A · S − U

2

S

]
. (12)

8 OPTIMIZING AND EVALUATING EDOF
CAMERAS

The most important parameter of a focal sweep (FS) camera
is the sweep range. Sweeping the focus over a large range
makes the PSF more depth invariant, but at the same time,
decreases the quality of the PSF at each depth. When the
focus is swept over a depth range d ∈ (d0−S·d0, d0+S·d0),
the PSF at a depth d can be written as:

IPSFd(x) =

∫ d0+S·d0

y=d0−S·d0
PSF yd (x)dy, (13)

where PSF yd is the PSF at depth d when the camera is
focus at distance y. Usually, people set S = S0 in such a
way that the sweep range (d0−S0 ·d0, d0 +S0 ·d0) covers
the depth range of interest in the scene.

The wavefront coding technique places a cubic phase
plate (CPP) of surface αu3 at the pupil plane. The coeffi-
cient α is an important parameter for this technique. Just
like S in focal sweep, a large α indicates greater depth
invariance, but decreases the quality of the PSF at each
depth. Usually, people choose α0 = 2S/D, where D is the
diameter of the aperture.

In Figure 11, we plot the PSF dissimilarity curves of
typical FS camera and CPP camera in solid blue and solid
red lines. For both cameras, the PSF at the middle depth
(depth = 7) is used as M for deconvolution. Each point on
the line indicates the dissimilarity or reconstruction error
R(M |Ki) (Equation 8) between the PSF at the specific
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Fig. 12. Optimizing parameters for focal sweep and
wavefront coding cameras. For focal sweep, the R
score is minimized when λ = 1.2, which means the
focus should be swept larger than the scene depth by
a factor of 1.2. For wavefront coding, the optimal λ = 1,
meaning the typical setting α = 2S/D is already close
to the optimal.

depth and the chosen PSF M . We can see that the CPP
camera is better when the depth is near the middle; and
the FS camera is more depth-invariant except at the two
boundary depths.

These empirical parameter selections might not be opti-
mal for defocus deblurring. Our derived evaluation criterion
can be used to optimize these parameters. For a focal sweep
camera with sweep range S = λ ∗ S0, we can simulate all
the PSFs at different depths and then compute the score
R using Equation 11. Also, for a wavefront coding camera
with parameter α = λ ∗ α0, we can simulate all the PSFs
at different depths and then compute the score R.

The λ − R curves of FS camera and CPP camera are
plotted in Figure 12 in red and blue lines, respectively. We
can see that for FS camera, R is minimized when λ = 1.2.
This indicates that the focus should be swept slightly larger
than the depth range of interest by a factor of 1.2. For the
CPP camera, λ = 1 yields the minimum R – the empirical
selection of α is already close to the optimal. Once the
parameter is determined, we can compute the optimal PSF
by using Equation 10.

For both FS camera and CPP camera, we achieve a
significant improvement in deblurring by combining the
optimized parameter setting and optimized PSF. The PSF
dissimilarity curves for the optimized FS and CPP cameras
are plotted in Figure 11 in dash blue and dash red lines.
Comparing with the solid curves before optimization, we
can see that the reconstruction error has been greatly
reduced. We have found that for an FS camera, the im-
provement can be mainly attributed to the optimization
of parameter S. For the CPP camera, the improvement
can mainly be attributed to the PSF optimization since the
typical choice of α is already close to the optimal.

To evaluate the performance of the two EDOF techniques
before and after optimization, we simulate a scene consist-
ing of CZP resolution charts at different depths ranging

from 1 - 10 meters. The EDOF techniques are simulated
using a 6.6um pixel size and a 50mm F/1.8 lens. The
image noise level σ is set to be 0.005. In Figure 3 (a),
two recovered EDOF images using the wavefront coding
technique (before and after) optimization are compared side
by side. In Figure (b), we compare images recovered using
the focal sweep technique. In both cases, the recovered
EDOF images exhibit both a smaller average reconstruction
error as well as less variation in reconstruction error as a
function of depth.

9 SUMMARY AND DISCUSSION

In this work, we presented a comprehensive framework for
aperture evaluation for the purpose of defocus deblurring.
We applied our framework to two different scenarios. In
Scenario 1, precise scene depths are given and the defocus
function is determined by the aperture pattern alone. We
use our framework to derive a criterion that can be used to
measure the deblurring artifacts caused by image noise. In
Scenario 2, EDOF cameras are used to produce a depth-
invariant PSF so that a single PSF can be used to recover an
EDOF image. Our derived evaluation criterion for EDOF
cameras accounts both for the optimality of of the PSF at
each depth and the variation in the PSF as a function of
depth.

Our derived evaluation criterion for both scenarios mea-
sures the expected reconstruction error of the deblurred
images, accounting for the effects of image noise as well as
the statistics of natural images. Low scores indicate better
deblurring qualities. In the proposed framework, the image
noise is assumed to be i.i.d Gaussian noise. This is usually
a good approximation for photon noise when the photon
number is not too small. We define the deblurring quality
as the L2 reconstruction error and constrain our discussion
to linear deconvolution algorithms in order to make many
analytical derivations possible. We have used the 1/f law as
a prior for natural images. This prior, although not as strong
as some other sparsity priors, is quite robust for a variety of
natural images. Of course, it is possible that under certain
circumstances (e.g., a different image quality metric), one
may have to change one or more of these assumptions and
derive a different evaluation criterion.

In this work, we have used the derived criteria to opti-
mize coded apertures for defocus deblurring and optimize
parameters for two EDOF cameras. In the future, we hope
to apply our criteria to other PSF coding methods for
defocus deblurring, as well as the design of EDOF cameras.
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APPENDIX A: EVALUATION CRITERION FOR
DEFOCUS DEBLURRING

For a given PSF K, the expectation of L2 reconstruction
error R for defocus deblurring is:

R(K,σ) = Σ
ξ

σ2

|Kξ|2 + σ2/Aξ
, (14)

where ξ is the frequency.

Proof: Since ζ is a matrix of Gaussian white noise, we
compute the expectation of the L2 reconstruction error with
respect to the random matrix ζ:

R(K,F0, C) = E
ζ
[‖F̂0 − F0‖2], (15)

where E denotes expectation. Substitute F̂0 using Equation
3, we obtain

R(K,F0, C) = E
ζ

[∥∥∥∥ζ · K̄ − F0 · |C|2

|K|2 + |C|2

∥∥∥∥2
]
, (16)

When ζ is assumed to be a Gaussian white noise N(0, σ2),
we have

R(K,F0, C) =

∥∥∥∥ σ · K̄
|K|2 + |C|2

∥∥∥∥2 +

∥∥∥∥ F0 · |C|2

|K|2 + |C|2

∥∥∥∥2 . (17)

F0 is sampled from the image space. According to the
1/f law for natural images [25][26], we know that the
expectation of |F0|2, A(ξ) =

∫
|F0(ξ)|2dµ(F0) exists.

Therefore, we have

R(K,C) = E
F0

[R(K,F0, C)] (18)

=

∫
F0

R(K,F0, C)dµ(F0) (19)

=

∥∥∥∥ σ · K̄
|K|2 + |C|2

∥∥∥∥2

+

∥∥∥∥ A1/2 · |C|2

|K|2 + |C|2

∥∥∥∥2

, (20)

where µ(F0) is the measure of the sample F0 in the image
space.

Substitute |C|2 by σ2/A and rearrange the equation, we
will get

Rξ(K,σ) = Σξ
σ2

|Kξ|2 + σ2/Aξ
. (21)

where ξ is the frequency. �

APPENDIX B

For coded apertures, the scale (or blur size) of PSF
varies with depth. For band-limited images, as far as the
deblurring quality is concerned, increasing the blur size
of a PSF by a factor m is approximately equivalent to
increasing the noise level by m.

Proof: Let us denote a PSF of blur size d as Kd in the
frequency domain. Obviously, the R value of an aperture

varies with the blur size d. Consider a reference blur size d0

with d/d0 = m, we have Kd(ξ) = Kd0(mξ). Therefore,

R(K|d, σ) = Σ
ξ

σ2

|Kd(ξ)|2 + σ2/A(ξ)

= Σ
ξ

σ2

|Kd(ξ)|2 + σ2/A(ξ)

=
N

Σ
ξ=1

σ2

|Kd0(mξ)|2 + σ2/A(ξ)
, (22)

Let η = mξ and consider the image is band-limited, then
we have

R(K|d, σ) =
mN

Σ
η=m

σ2

|Kd0(η)|2 + σ2/A(η/m)
(23)

=
1

m2

N

Σ
η=1

σ2

|Kd0(η)|2 + σ2/A(η/m)
. (24)

By making an approximate A(η) ∝ 1/η2, we have

R(K|d, σ) ≈ 1

m2

N

Σ
η=1

σ2

|Kd0(η)|2 + σ2/(m2 ·A(η))
(25)

=
N

Σ
η=1

(σ/m)2

|Kd0(η)|2 + (σ/m)2/A(η)
. (26)

Although A(η) ∝ 1/η2 is not an accurate approximation
of image prior, it is proper for analyzing finite-resolution
images. From Equation 26, we can see

R(K|d, σ) ≈ R(K|d0, σ/m). � (27)

APPENDIX C

When an image is blurred with kernel Ki and then decon-
volved with kernel M , the expected L2 reconstruction error
R(M |Ki) is

R(M |Ki) = E
F0,ς
‖F̂0 − F0‖2

= Σ
ξ

[
A·|Ki−M |2
|M |2+|C|2 +

σ2·(K2
i−M

2)
(|M |2+|C|2)2 + σ2

|M |2+|C|2

]
. (28)

Proof: For Equation 2 and 3, we have

R(M |Ki) = E
F0,ς
‖F̂0 − F0‖2

= E
F0,ς
‖F0 ·Ki · M̄ + ζM̄

|M |2 + |C|2
− F0‖2

= Σ
ξ
A ·
[
|KiM̄−M

2−C2

M2+C2 |2 + C2 · | M
(M2+C2 |2

]
. (29)

By substituting C2 = σ2/A and re-arranging, we can
obtain:

R(M |Ki) =

Σ
ξ

[
A·|Ki−M |2
|M |2+|C|2 +

σ2·(K2
i−M

2)
(|M |2+|C|2)2 + σ2

|M |2+|C|2

]
.� (30)
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