Robust Stereo with Flash and No-flash Image Pairs
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Abstract

We propose a new stereo technique using a pair of flash
and no-flash stereo images that is both efficient and robust
in handling occlusion boundaries. Our work is motivated
by the observation that the brightness variations introduced
by the flash can provide a robust cue for establishing stereo
matches at occlusion boundaries. This photometric cue is
computed per pixel, and though on its own is not robust to
reliably resolve depth, it can provide a new discriminant to
support patch-based stereo matching algorithms. Our ex-
periments using a hand-held Fujifilm W3 3D camera show
satisfying stereo performance over a variety of scenes, in-
cluding several outdoor scenes.

1. Introduction

Equipping computers with stereo cameras and comput-
ing depths and spatial relations from stereo image pairs
has been a well-researched problem [22], with applications
in 3D modeling for robot navigation, new image synthe-
sis, augmented reality, gaming and many others. Recently,
stereo imaging has found its way to consumer products such
as digital cameras, mobile phones, and tablets (see Fig-
ure 1). The basic stereo reconstruction algorithm works by
finding the projection of the same scene point over two or
more images. Under the assumption that each scene point
projects the same brightness on each image, stereo recon-
struction becomes a pixel matching problem. The matching
is typically done by minimizing sums of squared or absolute
differences, maximizing pixel correlations, or by applying a
rank or census transform [27] and then matching the ranks
or bit strings. This works fairly well if there is enough tex-
ture, but surfaces with uniform color are challenging [2].
In addition, pixel matching can be difficult at occlusion
boundaries caused by depth discontinuities because the lo-
cal region around a boundary pixel will be different. This
has been addressed by using multiple shifted windows and
choosing the one that matches the best, with the assumption
that all those pixels come from the foreground object [4].

atroccoli@nvidia.com

karip@nvidia.com

camera camera flash camera

flash camera

camera flash

Android Tablet with
Stereo Camera

Sony Bloggie
3D Camera

Fujifilm FinePix
3D Camera

Figure 1. Consumer stereo cameras with a flash.

Even this heuristic can fail with thin objects.

The basic, local algorithm, performs a winner-takes-all
(WTA) approach that assigns to each pixel the disparity pro-
viding the best match. The result is obtained quickly, but
is usually noisy. Global methods, in contrast, are gener-
ally formulated using an energy minimization framework to
find the best match over all the image pixels imposing some
smoothness conditions. These tend to be computationally
expensive. More efficient approximations to the global so-
lution have been sought using dynamic programming, com-
puting the total cost in stages and reusing subcomputa-
tions that would otherwise be repeated [3, 4, 7]. Whereas
dynamic programming methods generally fail to simulta-
neously incorporate both horizontal and vertical continu-
ity constraints, graph cuts [14] succeed by formulating the
stereo matching problem as finding the minimum cut in a
graph, which can be thought of as extending dynamic pro-
gramming to three dimensions. Another global approach is
to cast the matching problem into a Markov network frame-
work and solve it using belief propagation [24]. More de-
tails and comparisons on the state of the art algorithms are
given in [22, 5, 12].

Pixel correspondences are not the only cues that can be
used in 3D reconstruction. Shading provides a different cue
for surface shapes and therefore relative depths, and allows
reconstructing the shape of a surface from its intensity vari-
ations [0, 13, 28]. Most such methods include simplify-
ing assumptions, such as Lambertian surface reflectance.
Photometric stereo uses a minimum of three light sources
that can be selectively turned on and off to recover the
albedo and the surface orientation at every pixel. The light



sources play a role similar to the two cameras in traditional
stereo. Samaras ef al. [21] combine shape from shading
and stereo for 3D reconstruction. In binocular photomet-
ric stereo, Du et al. [9] integrate parallax and shading cues
under a sequence of illumination directions to obtain both
metric depth and fine surface details. In addition, shadows
can provide a hint for relative depths [23, 15].

Active light systems used in 3D acquisition project a pat-
tern on the scene to create a synthetic texture allowing ac-
curate matches in areas of constant color [8, 20]. The Mi-
crosoft Kinect uses an infra-red projector-camera system to
resolve the depths in real-time for objects up to a distance
of 6m. Anderson et al. [1] project three colored lights to a
scene, capture the image with the color camera in Kinect 3D
system, and combine the normals from photometric stereo
with Kinect’s stereo depth map, producing higher quality
depth maps than from Kinect alone. Our proposed flash-
stereo system uses active illumination, with the advantage
that it does not require to calibrate the flash position and
intensity, and can even work in the outdoors.

In computational photography, flash and no-flash pairs

have been used to obtain better detail, and to create shad-
ows that can be used as cues to separate foreground from
the background. Petschnigg er al. [18] capture flash and
no-flash image pairs and propose to transfer details in flash
images to the noisy no-flash images. Raskar et al. [19] use
four flashes to detect depth discontinuities based on the pro-
jection of shadows and create stylized images. Feris et al.
[11] propose using small baseline multiple-flash illumina-
tion to assist detecting and preserving depth discontinuity in
stereo vision. Both approaches require strong illumination,
short distances to the foreground objects, and short distance
to the background behind them in order to create obvious
shadows, limiting their applicability.
Our flash/no-flash system. Armed with these ideas we set
ourselves to build a stereo system using a consumer 3D
camera and two sets of stereo images: one under ambient
light and one with ambient plus flash light. In the onset of
our work we hoped that by carefully calibrating the flash
location and intensity, we would get additional constraints
for both, the object surface orientation based on the flash
reflectance variations, and for the distance from the flash by
estimating the fall-off of the flash intensity. We further ex-
pected to use the shadows cast by the flash and imaged by
the two cameras to detect the object boundaries and the dis-
tance between a foreground object and the background over
which the shadow is cast.

Our first tests on the scene in the left of Figure 2 were
promising, we were able to see all the cues we expected,
such as light variations and shadows. However, other more
realistic scenes, like the hand scene in Figure 2 did not work
as well: calibration of the flash radiance as well as com-
pletely separating its contribution from that of the ambient

Figure 2. Our first scenes: a cup on a box and a hand.

light proved very difficult, and since we had a single light
source, we were unable to separate the effects of surface
depth and orientation from the effects of varying surface re-
flectance. Another simple approach that one may think of
is to combine each flash/no-flash RGB image pair into one
6D image and then applying a traditional stereo algorithm.
This approach unfortunately does not work well mainly be-
cause adding extra 3D dimensions alone helps very little in
discriminating depth discontinuities.

However, we found that we could use the ratio of
flash/no-flash images as an additional per-pixel constraint
for stereo matching; a constraint that is robust against
changes in illumination, surface reflectance, and does not
require knowledge of the flash position or its intensity, as
long as the flash is sufficiently close to the cameras. The ra-
tio images provide a strong per-pixel cue allowing reliable
matching at occlusion boundaries, and even on narrow fore-
ground object structures, with which traditional window-
based stereo matching approaches struggle. The result is a
disparity map that is much cleaner than what simple winner-
takes-all approaches produce.

To keep matching robust and fast, we compute the dis-
parities at the resolution of integer pixels, which quantizes
the depth estimates especially for distant objects. We post-
process the basic stereo result to reduce quantization and
provide a smoother output. The results are as good or better
as many methods that use global optimization, but the pro-
cessing requirements, both in time and memory, are much
lower, making the approach practical for implementation in
hand-held devices such as tablets and mobile phones.

2. Flash / No-Flash stereo

This section details our stereo matching pipeline. We
first describe our mathematical framework and justify the
properties of the ratio image R the we use in our matching
process. After stereo matching and left-right consistency
check we smooth the disparity images using the R map. We
finally discuss the computational and memory complexity
of our method and some alternatives.

2.1. Image formation

Figure 3 illustrates a binocular system with two iden-
tical parallel cameras located at O; = (—b/2,0,0) and
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Figure 3. The geometry of a binocular stereo camera with a flash.

O, = (b/2,0,0), both aligned along the positive z-axis,
and with lens focal length f. The flash is located some-
where close to the cameras, but its precise location need
not be known. Our input data consists of two pairs of
stereo images, the first pair (F; and F;) with flash, and
a second pair (G; and G,) without flash. We rectify the
images so that any surface point visible to both cameras
projects to the same scanline. For a scene point p, we
have z;(p) = z.(p) — D(p.), where z;(p) and x.,.(p) are
the z-coordinates of p’s projection to the left and right
images and D(p,) = x;(p) — z-(p) is the disparity that
depends on the depth at p: D(p,) = b- f/p.. There-
fore, for surface points p visible to both cameras, we have
[F},Gi](x) = [Fr,Gy](x + D(p.)). Stereo vision tech-
niques estimate the disparity map D by fixing one image as
reference and finding for each pixel a corresponding pixel
in the other image, and storing the disparity. From the dis-
parities we can find the depth at each pixel as p, = b- f/D.

For Lambertian surfaces, the measured intensity of p in
the no-flash images G relates to ambient illumination, sur-
face shape, and reflectivity by

G(p) =n-1I.- Ry, (1)

where [, is the intensity of ambient illumination (at p, omit-
ted for clarity), Rs is the surface reflectivity (again, at p),
and 7 is a proportionality constant between measured irra-
diance and scene radiance. With flash on, we have

(2, 0)

F(p)=mn-Io-Rs+n-Ij- -3

- R, 2)

where I is the intensity of the flash, (7, ¥) is the inner prod-
uct between the surface normal and direction to the flash,
and r is the distance from p to the flash.

By dividing Equation 2 by 1 and taking log, we get the
ratio

R(p) = log gg; = log (1 + % . <ﬁr’f>> )

We can see that this ratio image R is independent of surface
reflectivity, and varies based on the surface normal and ob-
ject distance. Note that this independence still holds even if
the exposures of flash and no-flash image, ¢;, ¢, are different
and even if Gamma correction has been applied:

(ti- F(p))" F(P)) @
(tr - G(p))" G(p)
is still independent of surface reflectivity. To avoid division

by zero, we define the ratio image as R = log(F + ¢) —
log(G + €), where € is a small number.

R(p) = log

t
= <log -+ + log
ty

2.2. Flash/no-flash for stereo matching

Equations 3 and 4 show that the ratio map R is essen-
tially independent of the scene albedo and is instead related
to distance and surface orientation. Although this equation
will not be accurate for non-Lambertian surfaces, our key
observation is that neighboring pixels with similar R values
are likely to originate from the same surface, and neighbor-
ing pixels with very different R values are either at different
distance or have different surface orientation.

We make use of this particular property of R images to
solve the well-known difficulties at depth discontinuities in
stereo matching. While the traditional stereo methods use
a fixed patch shape for correspondence matching, we pro-
pose using the R map to find proper patch shapes for stereo
matching. As shown in Figure 4 (a,b), the traditional stereo
uses rectangular or circular patches for matching. At oc-
clusion boundary, such patch contains two different depths
and often leads to wrong disparity estimates. However, our
technique constrains only foreground pixels to be included
in the matching cost by incorporating R into the selection
weight, yielding much more accurate and sharp disparity
maps.

For each pixel z in the left image, the matching cost of
disparity D is computed as

C(z,D) = > Ngu(A): Noy(dr) - lde>  (5)
[Al<r

where A is an offset in pixels within the extent r of the
matching window, r is the maximum radius of the offset,
dr = R(x+ A) — R(z) is the difference in the ratio image,
drp = Fi(x + A) — F.(x — D + A) is the difference in the
flash stereo pair, and N, (+) is a Gaussian of standard devi-
ation o. A small oa indicates that the extent of the neigh-
borhood is small, and near neighbors are always weighted
more than farther ones. o determines how strongly the ra-
tio image information is used to guide the matching. In our



Stereo Images (flash)

Ratio Images

(c) Left Close-up (b) Right View (a) Left View

(d) Right Close-up

Figure 4. Traditional fixed neighborhoods around a matching point
close to occlusion boundary have different backgrounds in the left
(a) and right (b) images. Our cross-bilateral weight that multiplies
distance term (blue) and ratio term (red) compares mostly only
foreground pixels (c.,d).

implementation, o is chosen as a fraction of the standard
deviation of R values in a local region.

The cost for the right image is computed in a similar way,
only the disparity D is added to x in Fj instead of being
subtracted from z in F,.. C(xz, D) is often referred to as a
Disparity Space Image (DSI) [4].

This approach (Eqn 5) is related to the cross-bilateral fil-
tering algorithm [18]: the more similar the neighbor’s R
value is to the R value at the current pixel, the more the
neighbor is taken into account in determining the match-
ing cost. Note that since we are not performing a weighted
interpolation, we do not have to normalize dividing by the
sum of weights, which allows faster computation. The R
value of a foreground pixel close to the occlusion boundary
is likely different from that of a neighboring background

pixel, whose contribution is therefore mostly ignored when
computing the matching cost. This behavior produces much
better matches close to the occlusion edges than the tradi-
tional approaches (see Figure 6).

2.3. Winner-takes-all and Left-Right-Consistency

There are many choices for computing a disparity map
from the DSI C'(z, D) [22]. Global optimization techniques
like graph-cut and belief propagation can give better results,
but they are much more expensive both in computation
and memory requirements than the simple winner-takes-all
(WTA) technique. Dynamic programming is relatively effi-
cient as far as the global optimization methods go, but still
increases the computation and memory requirements sig-
nificantly, especially if the information is to be propagated
across scanlines. We are particularly interested in trying to
achieve real-time stereo and therefore choose the simplest
WTA strategy with

D(z) = argmin C(z, D).

Normally WTA produces depth results, which are either
noisy or blurry, but as we show in the next section, our
method aided by the ratio map produces surprisingly good
results even with this simple approach. Higher quality
global methods such as Graph-cut can be of course com-
bined with our basic approach.

In order to detect surfaces that are not visible to both
cameras (called occluded or semi-occluded regions), and
further improve depth quality, we use the Left-Right-
Consistency (LRC) technique [25, 16]. Egnal and Wildes
[10] compare LRC with some other occlusion detection
techniques and show that LRC consistently offers an accu-
rate occlusion labeling. Given D; and D,., the two disparity
maps estimated from the views of the left and right cam-
eras, we define the consistency error as E(z) = |D;(z) +
D, (z+D(z))|. If D; and D,. are precisely estimated at vis-
ible points, they should be exactly opposite and yield zero
consistency error. In our implementation, once E(x) > 5,
stereo depth at pixel x will be labeled as unreliable (or oc-
cluded). For E(z) < 5, we average the disparities from the
two views.

2.4, Filtering to reduce depth quantization

We compute disparities at the resolution of integer pix-
els, because sub-pixel disparity computation not only is less
reliable, but also can significantly increase the computa-
tional cost. We propose a simple algorithm to increase the
disparity precision. The basic idea is to smooth the disparity
map by using similar R values as a guide. Our observation
is that both the disparity and R are locally linear for any
planar surface. As a result, averaging coarse but roughly
correct neighboring disparities when their pixels have sim-
ilar R values improves the accuracy of the disparity map.
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Figure 5. Iteratively smoothing disparities along similar colors,
disparities, and ratios produces better disparity maps.
However, surfaces at different depths or orientations must
not be blended together.

Given the initial disparity map D(z) calculated using
WTA and LRC, we iterate the disparities with
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where 7 is set to 2 in our implementation and 2 is the sum
of all weights

W(z,A) = Ny, (0F (2)) - Nypp (6D (2)) - e T2 (7)

with 6F(z) = F(z + A) — F(x), §D(z) = Di(x + A) —
Di(zx), and e~¢(=+2) is the confidence level of the match.
The basic idea is that the depth information should flow
from high confidence pixels to the low confidence ones,
and that the more similar the ratio and stereo images, the
stronger the flow.

We iterate this process; our experiments show that 10-
30 iterations are enough for good results, and beyond that
the disparity changes very slowly. In Figure 5, we zoom
in to the disparity range from 40 to 51 pixels. We can see
that at iteration 0, where no filtering has been applied, the
disparity map of the hand is not as smooth as we would like,
but smoothness improves with the number of iterations.

2.5. Computational complexity

The conventional similarity matrix computation has a
computational complexity of O(k N M), where k is a small

factor related to the size of the accumulation kernel, NV is the
number of pixels in the image, and M is the maximum dis-
parity, and requires a memory space of O(N M). Winner-
takes-all strategy does not need to store the whole DSI, and
therefore reduces the memory requirement to O (V).

Global optimization techniques like graph-cut require
the whole DSI to be pre-computed and stored, and the com-
putational complexity can be as high as O(N log(N) M).
Techniques like graph-cut involve Singular Vector Decom-
position (SVD) over a large N x N matrix, and therefore
further require lot of memory, even if sparse matrix tech-
niques are used. Yang et al. [26] study a fast GPU imple-
mentation of belief propagation and demonstrate a real-time
stereo system, but only at very low image and disparity res-
olutions. Dynamic programming (DP) is known to be effi-
cient, O(s M N), where s is proportional to the number of
possible state transitions. DP requires O(s M N) space for
the DSI for tracking the node states in optimization. The
main limitation of DP is that it can efficiently only enforce
depth coherence along the scanlines, not across, and it often
produces obvious depth stripe artifacts.

Our proposed stereo technique (Equation 5) is essentially
a cross-bilateral filter. Several fast bilateral filtering tech-
niques have been proposed in recent years. Paris and Du-

rand [17] show a 3D Kernel technique for fast bilateral fil-
tering which can be done in O(N + UZQV ch ), where L is the
N

number of image gray levels, and oy, o, are the 3D sam-
pling rates. They show that the filtering quality can still
be good with large o, o, and that by using an on-the-fly
downsampling technique, the memory requirement can be
kept as low as O(N).

3. Experimental evaluation

We evaluate our method with various scenes, both in-
doors and outdoors, and compare our method against stan-
dard stereo processing algorithms we implemented.

3.1. Benchmarking our results

Our method is quite unique in the requirement of a flash
and no-flash pair of stereo images as inputs, and therefore
cannot be directly evaluated using publicly available im-
ages such as the Middlebury stereo dataset [22]. Instead, we
captured a variety of scenes using a Fujifilm FinePix Real
3D W3 camera. This camera has two 10 MP sensors with
a baseline of 75mm and is designed to capture stereo im-
ages to be displayed on a 3D television or its built-in auto-
stereoscopic display. We did the standard stereo rig camera
calibration using using Bouguet’s Calibration Toolbox.! All
of captured images are rectified before stereo matching us-
ing the precomputed and stored calibration data so that we
can simply traverse scanlines during the matching.

lyww.vision.caltech.edu/bouguetj/calib_doc/
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Figure 6. A wicker chair captured from a distance of 2m on a cloudy day. The back of the chair shows a cross-shaped repetitive pattern
with thin stripes. This kind of pattern represents a challenge to stereo algorithms due to repetitiveness and occlusions.

The Fujifilm 3D camera provides a convenient flash/no-
flash shooting mode, where the camera captures two stereo
pairs in succession with a shutter lag of a few tenths of a sec-
ond. All the images for our experiments were captured by
leaving most settings (including focus, exposure, f-Number,
ISO, and white balance settings) in automatic mode.

We compare our flash stereo algorithm against two tra-
ditional techniques. For all three methods we use the sum-
of-squared-differences (SSD) cost metric. Both of the com-
parison methods use the shift-window approach to improve
their behavior close to occlusion edges. Both our method
and one of the comparison methods use WTA and LRC
strategies, while the other one uses 4-state dynamic pro-
gramming (DP) [7]. Our method used o = 0.01 and
op = 3. For each scene, our technique makes use of all
four images; the benchmark techniques only use the no-
flash stereo images.

3.2. Stereo matching results

Wicker chair. We first evaluate our algorithm on a scene
with a wicker chair shown in Figure 6, captured from a dis-
tance of 2m on a cloudy day. The back of the chair shows a
cross-shaped repetitive pattern with thin stripes. This kind
of pattern represents a challenge to stereo algorithms due
to repetitiveness and occlusions. Figure 6 (d) shows the
depth map obtained using our proposed flash stereo method-
ology, 6 (e) shows the depth map computed using sums-
of-squared-distances with shifted windows WTA plus LRC,
and 6 (f) using shifted windows and dynamic programming
in place of WTA. Our algorithm is able to resolve the oc-

clusion boundaries very well on the back of the chair, but it
fails to resolve some of the repetitive patterns on the seat.
The local WTA with shifted windows shows errors both on
the back and on the seat. DP failed on almost all clutter
regions due to its strong assumption of smoothness, but it
worked well on the seat of the chair where there are no depth
discontinuities. For this scene we choose a large patch size
r = 17 for flash stereo in order to combat the repetitive pat-
terns. For shifted windows WTA and we also tried different
patch sizes and got the best results with » = 11 and r» = 10,
respectively.

Garden leaves. The second example in Figure 7 shows
plant leaves in the garden, where the flash is relatively weak
compared to the ambient light from the open sky. The near-
est leaf is about 1.5 meter away from the camera. We can
see that the ratio image varies with distance and surface
orientation. Compared against the result of the other two
benchmark techniques, our proposed flash stereo technique
(d) reveals better 3D structures of the leaves. Notice that
thin stems are also well reconstructed. Dynamic program-
ming (e) poses strong constrains on the surface smoothness
and therefore suffers from severe blurriness in the disparity
map.

Cup on a box. Our final example in Figure 8 shows a sim-
ple indoor scene with a cup on a box on an office desk.
The object surface has little texture, which makes the prob-
lem difficult. We can see that dynamic programming can
recover the disparity of the non-textured region better by
using global optimization, but yields blurry results along
the depth edges. As expected, the two WTA methods can-
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Figure 7. A garden scene captured under morning sunlight. The nearest leaf is about 1.5 meter away from the camera.

not recover the depth of non-textured surface well, but they
perform better at the sharp depth edges. Of these two, our
technique seems to work better on this scene.

4. Conclusion

We have presented an efficient and robust stereo system
for use with consumer stereo cameras. Our system uses
a flash that is available on all such stereo systems, and it
works without requiring calibration of the flash position or
radiometric quantities such as its intensity or frequency dis-
tribution. It even works outdoors, as shown in one of the ex-
ample scenes. This is in contrast to several shape and range
cues we originally hoped to work, such as distance-based
light fall-off (which would have required flash calibration),
modulation of the reflectance based on surface normals and
using those as actual normal constraints, or using shadows
as cues for distance between the occluding and occluded
surfaces.

The ratio image of the flash and no-flash exposures
provides a robust per-pixel constraint that helps in deter-
mining correct pixel correspondences. In particular, when
combined with cross-bilateral filtering, it avoids mixing in
background pixels when matching foreground object pixels,
yielding crisp occlusion boundaries. Compared to shifted
windows, it can also be applied for matching foreground
objects thinner than the width of a matching window.

There are limitations with the proposed approach. First,
it benefits from ratio image constraints only when the fore-
ground objects are within the reach of the flash and the ratio
image shows discontinuities at depth boundaries. The pro-
posed technique strongly prefers flashes with more power

and smaller beam angle because a stronger flash light pro-
duces ratio images of higher dynamic range (or higher pre-
cision). A quantitative evaluation of the effect of flash
power is worthy of further exploration. Secondly, strongly
specular surfaces are always challenging for any stereo
method, but since we project additional light to the scene,
ratio images of specular surfaces are even more unreli-
able. Finally, the current method is only suitable for static
scenes.
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