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The ray-tracing method is used to discuss Gaussian optics. After proving that Gaussian
optics can be described by matrices, some often-used general formulas for telescopic and focus-
ing systems are derived. This formalism is then used to solve several problems. They are se-
lected to make the reader familiar with the application of the matrix representation of Gaussian
optics and to acquaint him with some optical systems that are very useful but not well known
among physicists who use optical methods only occasionally.

I. INTRODUCTION

LTHOUGH matrices are often used to de-
scribe electron-optical systems,! and al-
though there exists an excellent modern book on
geometrical (light) optics® which uses matrices,
the matrix technique of dealing with optical prob-
lems is by no means common knowledge among
physicists, nor is it, as a rule, taught at colleges
and universities. One probable reason is that, to
the knowledge of this author, there is no paper or
book that addresses itself not to the professional
optical systems designer, but to the physicist who
uses optical methods only occasionally in the
laboratory. This article attempts to fill that gap.
Since the laboratory physicist usually has to
assemble his optical system with stock items, his
possibilities for correcting any but chromatic
aberrations are limited. We, therefore, deal pri-
marily with first-order (Gaussian) optics and
mention aberrations only to see what the limita-
tions of Gaussian optics are and what has to be
avoided in the design of an optical system. We try
to demonstrate that the description of Gaussian
optics with matrices makes both the analysis and
synthesis of optical systems so simple that they
can be done in a systematic way even by a person
inexperienced in this field. Also, we try to show
that the matrix representation of Gaussian optics
is well suited to be taught at our colleges and
universities, since it would acquaint the student
with Gaussian optics and would make him
familiar with matrices in connection with a very
simple subject.
* Work done under the auspices of the U, S. Atomic
Energy Commission.
1 M. S. Livingston and J. P. Blewett, Particle Accelerators
(McGraw-Hill Book Company, Inc., New York, 1962).
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We intentionally limit ourselves to light optics,
since the application of this formalism to electron-
and ion-optical problems is trivial to the physi-
cists concerned. The only concession we make is
that in our general formulas we do not assume the
object and image space to have the same index
of refraction, thus making these expressions
directly applicable to electron-optical problems.

II. RAY-TRACING FORMULAE AND
INTRODUCTION OF MATRICES

To derive the ray-tracing formulae, we require,
at least at first, that the optical system consist of
lenses with rotational symmetry with all axes
coinciding, thus forming the common optical
axis. Therefore, we momentarily exclude cylinder
lenses. We furthermore restrict the discussion in
the beginning to meridional rays, i.e., to rays that
lie in a common plane with the optical axis of the
system.

To describe a ray at a reference plane (RP),
which is always perpendicular to the optical axis,
we introduce the two quantities » and " (Fig. 1).
The distance between the optical axis and the
intersection between the ray and the RP is given
by r, whereas 7’ is an abbreviation for dr/du,
describing the resulting change dr of ¥ when the
RP is displaced by du. The object of tracing a ray
is to establish the relation between 7, 7’ of some
initial RP and #, 7’ of any other RP of interest. In
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deriving these relations, we assume both » and »/
to be small enough so that only the lowest signifi-
cant powers of # and 7 have to be taken into
account. This leads to equations that are linear
in 7 and #/, giving first-order (Gaussian) optics.
Since we almost always use this approximation,
for simplicity we usually refer to #' as the angle
between the ray and the optical axis (although
7' is, as introduced above, really the tangent of
that angle).

Since a ray goes either through a homogeneous
medium or is refracted at the interface between
two media with different indices of refraction, we
have to derive, at least in principle, only the two
basic relations that we discuss in Secs. IIA

and 11B.

A. Transit Through a Homogeneous Medium

In Fig. 2, and all other figures of this paper,
the location of the RP's are marked by numbered
points on the optical axis. If RP; and RP, are
separated by the distance D),, we directly obtain
from Fig. 2
re=71+Dypry

(1a)

and

vl =7y,

B. Refraction at Interface Between
Different Media

In our approximation we can represent all
interfaces by spherical surfaces. In accordance
with Fig. 3, we obtain for /<1, r/<1, r1 &R
from Snell’s law,

ny {(r +ri/R)=ny (r/ +71/R).

After rearrangement, and with 1/R=K, we ob-
tain for the relations between ry, ;" and rq, 75':

re=1;
re = K[ (n1=n3) /msJrit- (ny/ma)ry/.

Since we carry only first-order terms, we can as-

(2a)
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Fie. 2. Ray transit L .
through a homogeneous f, 2
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sume that the refraction takes place at the plane
that is tangential to the interface at the inter-
section between the axis and the interface
(vertex), thus establishing the same set of RP’s
for all refracted rays; this does not change
Eq. (2a).

C. Consequences and Applications of
Eqs. (1a) and (2a)

In our approximation, the relations between
ry, r{ and 7y, 7y’ are linear for both the transit
through a homogeneous medium and for refrac-
tion at any interface. Since tracing through a
whole optical system consists of a sequence of
these steps, the relation between the 7, ¥’ of any
two RP’s must be a linear one, too. It is, there-
fore, appropriate and practical to describe these
relations by matrices. If we introduce the

abbreviation
r
r= < ,> 3)
r

for the column vector

()

we can rewrite Eqs. (1a) and (2a) as

r2=(0 . >r1 (homogeneous medium), (1b)

and

1 0
e (K L(mi—ny)/n]  {n1/ nz))rl
(2b)

(refraction).

We notice that the determinant of the matrix in
Eq. (2b) (which describes the transition from a
medium with a refractive index #; to a medium
with refractive index #3) is #1/n,, whereas the
determinant of the matrix in Eq. (1b) (no
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Fic. 4. Thick lens.

change of #) is one. Although we use a consider-
ably simpler method later, the matrix that de-
scribes the relation between any two RP’s can be
obtained by multiplication of matrices of the type
appéaring in Egs. (1b) and (2b), as we see in the
following example. Since the determinant of the
product of matrices equals the product of the
determinants of the matrices, the determinant of
the matrix describing the relations of the r in the
two RP’s must be equal to the ratio of the indices
of refraction surrounding these RP’s. We, there-
fore, have the general result for any two RP’s

@11 Qg
r2=A-1'1; A=

da1

); (T E—

@22

To demonstrate how A could be obtained in
principle, we calculate the matrix connecting the
two vertex planes of a thick biconvex lens. Ac-
cording to Fig, 4 we have

Ayt =19;
Assty=13; (5a)
A 34l3=1X4.

Here, 4,3 is equal to the matrix in Eq. (1b), with
D; being replaced by d; the matrices 4, and
A3sq are equal to the matrix in Eq. (2b) with, re-
spectively, K being replaced by K;=1/R; for
Ais, and K, ny, and #, being replaced by — K,
=—1/R,, nyand n; for 434 (For As4, K has to be
replaced by — K because of opposite curvature.)
Using Eqgs. (5a), (1b), and (2b), we obtain

To=A ;= A3 25t =A 544 934 1511 = A 1411,

AI4=A34<<1) f)(m[(nl—lﬂﬁ/"ﬂ

(ﬂjﬂz})

=< 1 0 ><1+dK1[(n1—n2)/n2] d(ﬂl/m)),
i Kol (ng—ms)/ns]  (n2/n1) K[ (m1—mn2)/n,] (n1/72)
14+dK [ (n1—ns) /5] d(n1/n2)
ry= | Ki[ (mi—ns)/ns |+ Ko (ns—mn2)/ns] I (5b)

FdK Kol (n1—n.) (n3—ns)/nans ]

Although Eq. (5b) contains all the necessary
information for ray-tracing purposes, the in-
dividual matrix elements do not yet give us
direct information about the focal length, posi-
tion of the focal points, etc., of the thick lens.
Before we discuss this subject in a general way
(Sec. IV), we make some generalizations in the
next section. With the exception of the discussion
of skew rays, Sec. III can be omitted at the first
reading without impairing one’s understanding
of the rest of this paper.

III. GENERALIZATIONS
A. Skew Rays

To discuss skew rays (i.e., rays that are not in
a plane with the optical axis), we use Cartesian

(n1/na) {1 +d K[ (ns—ns)/ns ]}

coordinates x—y in all RP’s, with all the x axes
parallel to each other (and therefore the y axes
are similarly parallel). If we generalize the
column vector r introduced in Eq. (3) to have the
components x, x, ¥, and 3’ in this order, we want
again to establish the relation between the 1’s in
different RP’s. As in Sec. II, by dropping all
terms of higher than first order, which particu-
larly excludes products between any of the
quantities x, x’, v, and y’, the relation between
the r’s in different RP’s can again be represented
by a matrix, which is this time a 4 X4 matrix. By
representing this 4 X4 matrix with the help of
four 2 X2 submatrices b,, in the following way,

bll bl?
B=( ) 6)
bZl b22
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it is easy to see that bys=0,=0. Since a ray
starting in a meridional plane always remains in
that same meridional plane, the special meridio-
nalray defined by x and x’s20 and y=9"=0inone
RP must also satisly y=9"=0 in any other RP.
This is evidently only possible if b3;=0; by anal-
ogy one obtains b13=0. Because of the rotational
symmetry around the optical axis, the matrices
describing meridional rays must be identical for
all meridional planes, which necessitates &3 =bs,.
This means that the 2 X2 matrices introduced in
Sec. II are sufficient to describe skew rays too.
Therefore, the 7, ¥’ introduced in Sec. I can be
interpreted as the values describing the projec-
tion of a skew ray onto any meridional plane of
interest, and a change in the notation introduced
in Sec. IT is not necessary.

B. Cylinder Lenses

If an optical system contains cylinder lenses
also, we redefine the optical axis as the axis that
perpendicularly intersects all interfaces between
different media, and we require that such an
optical axis exist. Using the same notation as in
Sec. ITIA, and arguing the same way, one again
arrives at the conclusion that the relation be-
tween the r in different RP’s can be expressed by
a 4 X4 matrix, which we split up into four 2 X2
matrices as in Sec. IITA. To find out under what
circumstances d12=0.1=0 [see Eq. (6)], let us
imagine that we calculate the matrix describing
the refraction at the interface between two differ-
ent media. It can be shown that for any second-
order interface (which are the only ones of
interest in our approximation), there exists one
Cartesian coordinate system x, y such that if
y=9"=0 before refraction, y=9"=0 holds also
after refraction, and the same is true for x and x’.
By using these coordinates, the refraction at the
interface is described by a 4 x4 matrix with
b12="bs1 =0 and, since we are dealing with cylin-
der lenses, by15%bss. Furthermore, since the tran-
sition through a homogeneous medium is de-
scribed by a matrix with b1 ="58s1=0 and b;; =04

:<(1) ?)1 bys and by vanish for a system con-

taining cylinder lenses when all the coordinate
systeimns mentioned above have the same orienta-
tion. Consequently, in this case it i{s possible to
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describe the relation between x, x” at two differ-
ent RP’s by a 2 X2 matrix (b11), and to inde-
pendently describe the relation of the v, y”’s by
another different 2 X2 matrix (bys). This means
that the methods outlined in this paper can be
directly applied to systems containing cylinder
lenses, provided their principal axes are aligned
as specified above. If this is not the case, by, and
boy in general do not vanish and one has to use
4 X4 matrices. Because of its relative unimpor-
tance, we do not discuss this case further.

C. Limitations of Gaussian Optics?

The obvious procedure for treating aberrations
(i.e., deviations from Gaussian optics) is to carry
not only first-order terms but also higher powers
of r and ¢’ in the calculation of the relation be-
tween 7, #' in different RP’s. Since a reversal of
the signs of #, #’ in one RP must necessarily lead
to a reversal of the signs of #, #' in all other RP's,
the expressions describing the relation between
two RP’s can depend only on odd powers of 7, 7',
Dropping higher than third-order terms, r in
some RP would then depend on 7y, 7,/ in some
other RP in the following way

r=auritary FaurdFaridry’
Fai5riri? Faer’?, (7)

and the expression for " would have the same
structure. The expression describing the transi-
tion through a homogeneous medium [ Eq. (1a)]
would remain unchanged, and corrective terms
would appear only in the formulae describing the
refraction at interfaces.

If Eq. (7) describes such a refraction, as, for
example, has to be proportional to the inverse
second power of the radius of curvature R of that
interface, since 13713 has to have the dimension
of a length and R is the only length besides 74
entering that problem. Requiring that the third-
order terms be negligible compared to the first-
order terms, one has, therefore, to fulfill, at least
order of magnitude-wise, the conditions

(ri/R)?<<1 and

We see that these conditions are weaker than the
ones originally set forth in Sec. IIB. Because we

?’1,2<<1.

8 For simplicity, we talk here only about meridional rays;
all the arguments hold equally for skew rays, where we
would use the four variables x, &/, ¥, and 3",
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x\ {a)

/ FiG, 5. Image formation

i‘ with planoconvex lens.
\1 (b)

find later that for thin lenses 1/f=(n—1)
X (1/R;+1/R5), we can replace (r;/R)><1 by
(ri/ )21 for a thin lens, again describing this
condition only to an order of magnitude. Simply
stated, this means that since the laboratory
physicist usually does not have the means to ob-
tain lens systems that are corrected for his
particular application, he should try to use his
lenses so that 72«1 and (r;/f)?><1, the latter
condition requiring that the square of the effec-
tive f-number of each lens be large compared to
one.

The correct use of a given lens can help to
minimize aberrations: If a given plano-convex
lens has to be used to form an image of an object
that is far away (Fig. 5), the use of the lens as
shown in Fig. 5(b) leads to smaller aberrations
than if used as in Fig. 5(a). Although in Fig. 5(b)
the ray is refracted twice, the aberrations are
smaller than in Fig. 5(a), since at each interface
in Fig. 5(b) the aberrations are of the order of }
of the aberration introduced at the second re-
fracting interface in Fig. 5(a) due to the smaller
change of #’ at each refracting interface.

Because chromatic aberrations are caused by
the wavelength dependence of the refractive
index of materials, their effects cannot always be
minimized by reducing the effective aperture of
lenses, and do not belong in the category of
limitations of Gaussian optics. With the excep-
tion of one application (Sec. VH), we do not dis-
cuss chromatic aberrations because a great
variety of achromats are available at reasonable
prices.

IV. DISCUSSION OF EQ. (4)

A. Significance of the Disappearance of
Matrix Elements

Referring to Eq. (4), we notice first that be-
cause of ||4||=n:/n:>0, at most only two of the
matrix elements of 4 can be zero. If two elements

actually are zero, they must be either the
diagonal elements or the off-diagonal elements.
To get a better understanding of the meaning the
different matrix elements can have (besides their
obvious role for ray tracing), we let the matrix
elements of 4 individually vanish:

(a) We set a;2=0. The equation for r, then
reads r;=a4;-7;. This means that the two RP’s
have an object—image relation, with the lateral
magnification m=ry/r1=2a;.

(b) We set a2 =0. The equation for 7y’ then
reads 7y =ass-7,’. This means that a parallel
beam of light entering the optical system also
leaves the system as a parallel beam. Since this is
the description of a telescope focused at infinity,
we call systems with aq;=0 telescopic systems
and introduce the angular magnification or
power of the telescope, p=7ry"/7,' =as. A further
discussion of telescopic systems follows in Sec.
IVB. In Sec. IVC the definition of focusing
systems is given.

{c) We set a;;=0. This means that for r,/=0,
then 7, =0 independently of the value of 71;i.e., a
beam of light parallel to the axis focuses in the
second RP to r,=0. Since this is the definition of
a focal point, a;; =0 indicates that the second RP
is a focal plane (FP).

(d) We set as2=0. A consideration equivalent
to the one above leads to the conclusion that for
a43=0, the first RP is a FP. A further discussion
of focusing systems follows in Sec. IVC.

B. Telescopic Systems

As an introductory remark to the discussion of
telescopic systems’ it might be worthwhile to
mention that we discuss them not only because
of the importance of the telescope as an instru-
ment for observational purposes, such as in
astronomy, but particularly because they can be
used advantageously to set up optical systems
in the laboratory, as we see in Sec. VC. If we
limit ourselves to telescopic systems with #; =,
which is fulfilled for an air—air system, and if we
introduce the power ¢ of the telescope as in
Sec. IVA(b), the matrix describing the relation of
the r in the two RP’s becomes

Ay :<1gp am), (8)
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where the value of the upper left element results
{rom the condition {|4 ]| =1.

To find out whether there are pairs of RP’s
that have an object—image relation,* we introduce
RP, at the distance D; to the left of RP;, and
RP; at the distance D, to the right of RP,
(Fig. 6). Analogously to the derivation of Eq.
(3b), by connecting ro to rs through r;=4 ¢re we
obtain with Eqs. (1b) and (8) for the matrix 4 3:

1 Dy 1/P ai\/1 Dy
(00 5 )
0 1/\0 p/\0 1

and, therefore,

1/p antDp+Di/p
‘4 ()3:< p >

&)

The position of the RP’s that have an object-
image relation is obtained by setting the upper
right element of this matrix equal to zero, giving

Dy=—Dy/p*—aw/p,
and (10)

ADy= —AD/p2

From Egs. (9) and (10) we draw the following
important conclusions:

(a) The lateral magnification #, introduced
before, is the same for all pairs of RP’s that have
an object—-image relation, and is the reciprocal of
the power of the telescopic system

m=1/p(=const). (11

(b) If the object is moved by the distance AD;,
the image moves the distance AD;/p? in the same
direction. This is equivalent to a constant axial
magnification 7.

M =1/pt=m?(=const).

(12)

Equation (11) allows a very simple and well-
known determination of the power of a telescope:
The ratio of the sizes of the objective aperture
{entrance pupil) and its image (exit pupil) gives
directly the power of a telescope. In Sec. VC, we
show that Eq. (12) is very important for the

¢In general, it is of course impossible to distinguish be-
tween real and virtual objects and images, the difference
being only their physical accessibility. In the design of
specific systems, the distance between physical barriers

(lens surfaces) and RP’s are known and have to be taken
into account if accessibility is of importance.

design of optical systems that use both telescopic
and focusing systems.

C. Focusing Systems

Referring to Eq. (4), we define systems with
@970 as focusing systems because, as we show
now, they have one FP (real or virtual—sec
Ref. 4) on either side of the optical system. To

F16. 6. Relative position
of RP’s for the derivation T ! {
of Eq. (9) (D; and D, are
positive in this figure).

L
|7

W

SR S

(]
Optical [ system

show this, we introduce, as in the previous sec-
tion, two new RP’s (Fig. 6) and find the FP’s by
setting the diagonal elements of Aq3 equal to
zero; we have

1 Do\joun aw\/1 D
a=(y )G ) 1)
0 1 as1 oy 0 1

After the multiplications are carried out, we have

a12+a11D1+D2(022+a21D1)>

an+Daaa
Aoz=
(1231 aoe+ Do

(13)

Setting the diagonal elements of this matrix equal
to zero, we find that there is one and only one FP
associated with each side of the optical system.

To relate the matrix elements of Egs. (4) or
(13) to the focal lengths (FL's) of the optical
system, we have to generalize the customary
definition of the FL for a thin lens, which is
usually defined as the distance between the lens
and the FP (Fig. 7). If one imagines that the lens
is made inaccessible by placing the lens between
two very thin glass plates, as indicated by the
dashed lines in Fig. 7, one is led to the following
generalized definition of the FL.:

rp =fior/
FIG. 7. Definition  FP Z ]L ri=0
of the FL for a thin y [
lens. i f, 1
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J,//fﬂ//g FiG. 8. Generalized defini-

/e T I tion of the FL's,

system

Optical

Referring to the ray originating from focal
point 1 in Fig. 7 ot 8, we have

f1=7’2/7’1/.

Referring to the ray going through focal point 2
in Fig. 8 and taking into account that for a posi-
tive FL 7; and r,’ have opposite signs, we obtain

fa=—ri/7s. (14b)

We introduce two different FL’s since we do not
know yet under what circumstances they are
equal.

With Eqs. (14) we can now easily construct
the matrix connecting the two FP’s of an optical
system:

For a ray originating from focal point one
(r1=0), we getin FPy7y= fi-r{" and ry’=0. Using
the notation of Eq. (4) we get ay2= fi1and a,;=0.
A ray parallel to the optical axis (r,/=0), inter-
secting FP; at r;, gives in FPy #9=0 and 7,

(14a)

F1G. 9. Definition of
2 and 2z for Eq. (15)
(21 and z; are positive
in this figure).

L
‘n
ro
N H
=
N~

R,
o
kezpt

= —71/fs, resulting in ¢y=0 and ay=—1/f.
The matrix connecting the two FP’s, therefore,
has the form

Arpyre, = (_ 10/f2 ];1>.

The matrix establishing the connection between
RPj, located at the distance 2; to the left of FPy,
and RP,, located at the distance 2; to the right of
FP,, is obtained by multiplying the matrix

Optical| system

TN
—
O
n

Arp,—rp, from the left by (1) 212 and from the

right by <(1) 211> (Fig. 9). Since we have made

these multiplications already, we obtain the re-
sult from Eq. (13) by setting a;1=a22=0, a12= f1,

@o1=—1/f2, Di=2;, and Dy=32,; we then have
Ty =410, ]

1 /2, 2122—f1f2
T

2\ 1 21 g (15)

and

42|l =f1/ fa=n1/ns. )

From Eq. (15) we learn that, for any air-air
system, fi1= fs. Setting the upper right element of
Ay in Eqs. (15) equal to zero, we get for the
positions of planes that have object-image
relation

2122 =f1f2-

If Eq. (16) is fulfilled, for the lateral magnifica-
tion m=ry/r; we obtain from Eqs. 15 and 16

m=—z/fo=—f1/2. (17)

Contrary to the magnification of a telescopic
system [Eq. (11)], the magnification obtained
with a focusing system depends on the position
of the object on the optical axis. A simple appli-
cation of Eq. (17) is discussed in Sec. VA.

It is evident from Eq. (16) that the axial
magnification of a focusing system depends also
on the position of the object. It is, therefore, only
possible to define an infinitesimal axial magnifi-
cation, i.e., an axial magnification that is con-
stant only over an infinitesimal region along the
axis. From Eq. (16) we obtain

dzs f1f2 f2
Mgy = ——— = =_._.m2:_.m2‘
dz, 2. f1 71

(16)

(18)

Equation (18) indicates that the image always
moves in the same direction as the object,
except when the object goes through the FP; in
that case, the image moves from 4+ » to — «, or
vice versa, depending in what direction the object
moves.

To get more familiar with the very important
and often used Eq. (15), we apply Eq. (15) to
Eq. (5b), the latter describing the relation be-
tween the vertex planes of a thick lens. If we
simplify Eq. (5b) by assuming #;=#, (as it is in
any air—air lens), we know from Eq. (15) that
fa=f1, thus making the indices 1 and 2 un-
necessary. If we use Eq. (15) to describe the
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Fic. 10. Geometrical image construction and relative
positions of FP’s, PP's, and NP’s of an optical system with
positive FL’s,

relation between the vertex planes of a thick lens,
Egs. (5b) and (15) must be equivalent since both
equations describe the same system. The differ-
ence between Eqs. (5b) and (13) is based only on
the choice of quantities used to express the
matrix elements (i.e., the radii of curvatures,
distances and indices of refraction, vs FL and
position of the vertex planes with respect to the
FP’s). We can, therefore, directly compare the
matrix elements. From the lower-left elements we
get for the FL

1
—=[(n2/n1) — 1]
/

XK1+ Ky —dK Ko[1— (ny/n2) ]}, (19)

To obtain the position of the right FP, we com-
pare the upper-left elements of Egs. (5b) and
(15); this yields

zy= — f{1—dK[1— (n./ns)]}.

It should be emphasized that this 2, describes the
position of the right vertex plane of the thick lens
(RP, in Fig. 4) with respect to the right FP of
the thick lens. According to our convention re-
garding the sign of z, (Fig. 9), RP, in Fig. 4
would lie to the left of the right-sided FP if 2, in
Eq. (20) were negative, as it would be for a posi-
tive, not-too-thick lens [1 —dK;(1—n1/n:) >0].

An equivalent comparison of the lower right
matrix elements of Egs. (5b) and (15) gives the
position of the other FP.

If we disregard the effect of apertures for the
moment, the FL’s and the position of the two
FP’s relative to an optical system describe that
system completely. Despite this fact, it is
customary and very practical to introduce two
new concepts, namely the principal planes (PP)
and nodal points (NP).

The PP’s are defined as the pair of planes that

(20)

have an object—image relation with a magnifica-
tion m=1, After satisfying the requirements of
Eq. (16) and setting m=1in Eq. (17), we obtain
for the position of the PP’s with respect to the
corresponding FP’s [see (Fig. 10)]°

Zo= "—fz and Zy= '—flg (21)

We can, therefore, redefine the FL’s as the dis-
tance between the FP’s and their corresponding
PP’s, a definition which is often used instead of
the one that we used originally. We can also use
the distances ¢ and b of two RP’s from their re-
spective PP’s, instead of 2, and 2., to describe the
positions of two RP’s that have an object-image
relation. By introducing s;=a—f and z,=b—f
into Eq. (16), we get, for a system with fi= fy=f,
the often-used relation 1/a+1/6=1/1.

The two NP’s are located on the optical axis
and their position on the optical axis is such that
a ray going through NP, with 7/, goes through
NP, with 7y’=r,". Since the two NP’s have an
object-image relation, Eq. (16) has to be satis-
fied. Using this and setting ;=0 in Eq. (15), for
7’ =7, we obtain z;=—f; and z=—f; (see
Fig. 10). This, together with Eq. (21), shows that
the NP’s are in the PP’s for systems with
fi/ fe=n1/ns=1, ie., for all air—air systems. Be-
sides depicting the relative positions of the FP’s,
PP’s, and NP’s for a system with positive FL’s,
Figure 10 also shows the self-explanatory geo-
metrical construction of the image of 7y, using the
properties of the FP’s, PP’s, and NP's. This
construction again allows us to directly prove
the two equations contained in Eq. (17), thus
giving Eq. (16) again.

In some cases, the concept of NP’s leads to a
simple determination of PP’s. The ray drawn in
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Fr1c. 11. Examples for simple determination
of NP's and PP’s.

8 It should be noted that a set of RP’s for which m= —1
is obtained from Egs. (21) by changing the sign of the
right sides of Egs. (21).
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Fig. 11(a) is obviously refracted twice as if it
were going through a plane-parallel plate, thus
giving the position of the NP’s and, therefore,
the PP’s. Figure 11(b) shows the position of the
NP’s and PP’s {for a typical “makeshift” cylinder
lens, namely a polished lucite rod. Obviously,
the ray drawn in Fig. 11(b) is not refracted,
showing that the two NP’s are at the center of
the lens, thus giving the two coinciding PP’s as
indicated.

D. Use of Mirrors and Significance
of the Sign of FL’s

When a mirror is used to connect two optical
systems, this should be done in such a way that
the optical axes of the two systems are reflected
into each other, as shown in Fig. 12. Although
the optical axis physically is then no longer a
straight line, all the symmetry properties re-
quired above are still fulfilled optically. We,
therefore, still draw the optical axis as a straight
line in the drawings of optical systems, even
though plane mirrors might actually be used, and
it seems that no modifications of the whole
analysis above are necessary. This is true with
one exception:

In our definition of the FL's [Eq. (14)], we
used the signs of # and #’, belonging to different
sides of the optical system. Essentially the same
is true if the FL's are defined as the distance be-
tween PP’s and FP’s, since the definition of the
PP’s requires the comparison of two 7’s located
on different sides of the optical system. While
these signs are well defined when no mirrors are
used, they can become ambiguous when plane
mirrors are part of the optical system. If, for
example, one mirror is used, the image of a right-
handed coordinate system is a left-handed coordi-
nate system ; and with the use of several mirrors
it is possible that the image of an object in any
RP is turned by an arbitrary angle with respect

F16. 12. Proper use of
plane mirror.

Plane mirror

F1G. 13. Concave mirror.

to the object, although the object and image RP’s
might still be parallel. This makes it apparent
that the signs of the » and #/, on one side of such
an optical system with respect to the signs of 7
and 7’ on the other side, can become a matter of
convention or definition. As a consequence, the
sign of the FL’s then becomes a matter of defini-
tion as well. This might come as a surprise to any-
one who deals mostly with single, thin, positive
and negative lenses, therefore associating a
positive FL. with a focusing system and a nega-
tive FL with a defocusing system. If one wants to
differentiate between focusing and defocusing
systems, a much better criterion seems to be
whether or not the focal point of interest is real
or virtual, i.e., accessible or 1naccessible, and we
see in the discussion of the doublet (with no
mirrors and, therefore, no sign difficulties) that
it is quite simple to build a system. with a nega-
tive FL but real FP’s.

For completeness we add a diagram represent-
ing a concave mirror (Fig. 13). Because of the
mirror action, the optical axis is reflected back
into itself, having opposite direction after reflec-
tion. We represent this part of the optical axis as
an extension of the first part of the optical axis.
It is easy to show that the vertex plane of the
concave mirror can be chosen as the location for
the two PP’s and that the FL is f=R/2, leading
to the position of the FP’s as indicated in Fig. 13.
With the same choice for the position of the PP’s
the FL of a convex mirror becomes f=—R/2.

V. APPLICATIONS

In the following applications we use positive
lenses exclusively because the number of applica-
tions requiring negative lenses is very limited
and, as a result, negative lenses are available only
in a very limited number of FL’s and diameters.
The figures should be interpreted as schematic
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representations because no attempt has been
made to draw them properly to scale. Individual
lenses are always drawn as biconvex lenses, al-
though one would often actually use different
types, such as planoconvex lenses or, most of the
time, achromats. We discuss exclusively air—air
systems {(#1=u2), so that the two FL’s of our
systems become equal.

After briefly mentioning a simple method for
the determination of the FL and the position of
the FP’s of an optical system, we discuss three
optical systems that can be used advantageously
to assemble optical systems in the laboratory. We
then analyze some typical problems that the
experimental physicist may have to solve in his
work.

A. Measurement of the FL and Position
of the FP’s of an Optical System

Equation (17) allows us to perform these
measurements in a simple way: Using a real or
virtual object in such a position that the magnifi-
cation of the image with respect to the object can
be measured, the magnification for this first
measurement is given by Eq. (17) as

my= —'Zz/f.

Changing the object-system distance, the dis-
tance between the system and the image has to
be changed by a measurable length d and one
obtains for this second measured magnification

may=—(22+d)/[.

The difference of these two equations gives for
the FL

f=d/(m,—m,).

With this now known value for f, the equation
for m; or m, then gives the position of the FP on
the image side, and 2z;= f/2, gives the FP on the
object side of the system. An often used special
case of this method consists of leaving the dis-
tance between object and image fixed and locat-
ing the system in those two positions where one
obtains an image of the object.

B. The Doublet

This system is of great importance since such
instruments as telescopes and microscopes are
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F16. 14. The doublet.

basically doublets; the doublet is, furthermore,
very useful in the laboratory since it makes it
possible to obtain a system with a specified FL
when only lenses with a limited variety of FL's
are available. According to Fig. 14, and by using
Eq. (15) to calculate the matrix A5, which relates
RP, to RP;, we obtain

1 1 D2 —f22> d le""‘f12
“3_ﬁﬁ<1 0 (1 D )

and, therefore,

1 /Dud— [t Dy(dDy— f2)—Dyf?
d Did—fi?

Comparing the lower-left matrix elements of
Egs. (22) and (15), we obtain for the FL of the
doublet

f==fif./d, (23)

indicating that f can be varied continuously by
changing d.

Setting the upper-left element of Eq. (22)
equal to zero, we obtain for the position of the
FP on the right side of the system

Dy=f?/d=—ff2/ f1,

leading to a real FP for a negative FL as men-
tioned in Sec. IVD. Because of symmetry, the
same holds for the other FP.

For d=0, Eq. (22) describes a telescopic
system with the power® p= — fi/f.. Focusing a
telescope to a finite distance requires us to change
d in such a way that the image, as seen from RP3,
appears to be at infinity. Since this is equivalent
to the statement that the left-sided FP of the
system has to coincide with the object plane, we
obtain d by setting the lower right element of the
matrix in Eq. (22) to zero, with D; describing the
position of the object, and we have

d=f&/D,. (24)

Although the “telescope’ is then a focusing and

8 In telescopes for terrestrial use,  is usually made
positive with the help of prisms that act as mirrors,
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not a telescopic system, the FL of the system is
not a very useful concept in this case and it is
customary to still call the system a telescope.
Using the distance d given by Eq. (24), one gets
from Eq. (22)

7’zl:f17’1/sz1= —PT/DL

This means that the angle under which an object
at a finite distance is seen through a telescope
focused on that object is p times the angle under
which the object is seen from the left-sided focal
point of the objective of the telescope.

Equation (23) indicates that it is possible to
realize very small FL’s by using lenses with small
FL's fi, f2 spaced by a large distance so that d
becomes large compared to these FL's. This, of
course, is the description of the construction of
a microscope, although in reality both lenses are
multiplets themselves in order to minimize
aberrations.

C. Combination of a Focusing with a
Telescopic System

In Sec. VB we dealt with the problem of de-
signing an optical system with an adjustable FL.
It is often equally important to be able to change
the distance between the FP’s of an optical
system without changing the FL. This can be
done conveniently by combining a telescopic
system with a focusing system. If in Fig. 15 RP;
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and RP; are the two RP’s that go through the
entrance and exit pupil of the telescope, or any
other pair of RP’s that have an object-image
relation, the matrix connecting r; to t; is given by

D
10
—ﬁ<1

Comparison of Eq. (25) with Eq. (15) vields the
following results:

_Df;f 2). (25)
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(a) The FL of the combined system is given
by feomb=2"f, and is, therefore, independent of
the distance between the telescopic and focusing
system. This result can also be easily obtained
without the use of matrices; we simply inspect a
ray that is parallel to the axis before it enters the
telescopic system, making use of the properties
of a telescopic system and using Eq. (14b) for the
definition of the FL, we again get foomn=2"F.

(b) If the left-sided FP of the focusing system
lies at a distance D to the right (left) of RPy, the
left-sided FP of the combined system lies at the
distance D-p? to the right (left) of RP;. This is of

fa
FP [\ FP FP FP FP Fp

/\
VLR \f—susv 3

F1c. 16. Zoom-triplet (RP2 and RP;3 are used in Sec. VE).

course a direct consequence of Eq. (10). It is
obvious that the right-sided FP of the combined
system coincides with the right-sided FP of the
focusing system.

These properties of this system can be used
very advantageously when two rather immovable
objects, such as a spectrometer and a heavy ap-
paratus, have to be connected optically by a
system with exactly specified FL and position of
the FP’s. One would first build a focusing system,
usually a doublet, that together with the tele-
scope has the desired FL. The required distance
between the FP’s of the system can then be ob-
tained without any change of the combined FL
by properly adjusting the distance between the
focusing system and the telescopic system.

D. Design of a Simple “Zoom” Lens

For some applications it is desirable to have an
optical system whose FL can be varied without
changing the distance between its FP’s. Although
this can be achieved with the system discussed
in Sec. VC, we demonstrate that it is possible to
design a system that is much simpler in every
respect. By using Eq. (22) it can easily be shown
that a doublet cannot have the desired properties.
We, therefore, discuss a triplet, since it has one
more distance that can be changed (Fig. 16).

To obtain a very simple system, we impose, in
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addition, the conditién that we move only one of
the three lenses in order to change the FL with-
out changing the distance between the FP’s of
the system. Since moving lens 1 (or lens 3) alone
is equivalent to a variation of the distance be-
tween the two components of a doublet, we,
therefore, want to move lens 2 alone, thus keep-
ing the distance between lenses 1 and 3 constant,
implying a;+a;=a=const. From Fig. 16, we
obtain for the matrix 445 which describes the
relation between r; and 1,4,

A14=A34'A23'A12-

Using Eq. (15) to express the three matrices on
the right side of this equation in terms of the
FL’s and a; and.a,, we get for Ay, after the
multiplications are carried out,

_Udféz

1
f1f2f3<0/1012 - fz2

(26)

44.142'-—'

NEES )
—asf?? )

For the FL of the system, comparison of Eq. (26)
with Eq. (15) gives

f=Jfifefs/(@as— f2).

Since we impose the condition a;+a;=a=const,
the distance between RP; and RP,isindependent
of 1. Therefore, by again consulting Eq. (15),
we find as the condition for a constant distance
between the FP’s of the system that the sum of
the diagonal elements of Eq. (26), divided by
the lower-left element, must be independent of
the position of lens 2. By using ay=a—a;, this
quantity becomes

Laifa+(a—~ay) f2]/[ fP—ai(a—a)].

Since the denominatoer is of second order in @, and
the numerator only of first order in a;, this
expression can be independent of e, only if the
numerator vanishes for all a;. This gives us the
conditions a=a,4+a:=0 and f;?= fi2 Since we
usually work with positive lenses only, the second
condition is equivalent to fiy=f;. When these
conditions are fulfilled, the FL of the system is
given by

f=—fafi*/(al+ ),

and the distance between the FP’s of the system
is independent of a; and, therefore, of f.
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E. Treatment of Apertures

Up to this point we have paid no attention to
the effects of apertures in an optical system.
Apertures are, of course, unavoidable, since every
lens mournt represents an aperture. As we see in
Sec. VF and VG, apertures can be very important
or even be the main concern in the design of an
optical system. It is, of course, practically im-
possible to develop a general theory that de-
scribes the effects of all apertures in an optical
system, since the detailed effects of the apertures
depend too much on the problem to be solved with
the optical system. We can, however, give a
method that usually makes a discussion of the
effects of the apertures fairly simple: Instead of
dealing with the apertures themselves we project
all of them into the space to the left or the right
of the optical system, and we see that this can be
done with very little additional computational
effort. That this procedure achieves exactly the
intended purpose can easily be seen from Fig. 17:
If a light ray, originating from P, intersects the

A
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image 4’ of the aperture 4, it must also intersect
4 and is therefore not transmitted through the
whole optical system. The same is obviously also
true if 4" were to be the image of 4 and it the
backward extension of the ray were to intersect
A" as indicated in Fig. 17.

For the cases where the location and size of the
projection of the apertures are not trivial, we use
the example of the triplet, Fig. 16, to demonstrate
how the images of all apertures can be obtained
with very little more work than is already
necessary to obtain the matrix describing a sys-
tem. If we want to project all apertures into the
space to the left of the optical system, we should
calculate the matrix 414 in the following way: We
first write down Ais, then multiply this matrix
from the left by A5 to obtain 4 ;;, then multiply
this matrix from the left by 434 to obtain 4,4, and
so on, if there are more lenses. For example, if we
want to find the image of an aperture that lies
between lens 2 and 3 (this could, of course, be a
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lens mount of lens 2 or 3!), we use the matrix 413
and insert for a, such a value that, for the purpose
of this calculation, RP; coincides with the plane
of the aperture. By using the intermediate results
of the calculation of the matrix 4,4 in this way,
we obtain without any additional computations
the matrices connecting all aperture planes with
RP;. If we want to project all apertures into
the space to the right of the optical system, we
calculate analogously Ags Aws, A4, in that
order (see Fig. 16).

To actually obtain the image of an aperture
from the matrix that connects the aperture plane
with a RP outside of the optical system, we use
the notation of Eq. (4) with RP; and RP, repre-
senting these RP’s. Referring to Fig. 6 as well as
to Eq. (13) and its derivation (with D; and D;
replaced by d, and d;), we find the location of the
image of RP, by setting the upper-right element
of the matrix in Eq. (13) equal to zero for d»=0,
obtaining

(27a)

d,= —1112/@11

for the location. The size of the image of RP; is
given by the upper-left element of the matrix in

Eq. (13) and becomes
(27b)

1’0=7’2/(Z11.

Analogously we find that the image of RP; is
given by

Go=—0a12/ 022, (27¢)
and
G21012 |4 12]] e
7’3=7’1<a11_‘ =7y =7y . (27d)
227 Q22 220

These results are schematically represented for
the usual case #n:/n.=1 in Fig. 18, which also
shows the angles extended by the images of
71(r2) as seen from the intersection between the
axis and RP,(RPy).
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F16. 18. Projection of RP’s (or apertures) for ni/na=1
(d1 and ds are positive in this figure).
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F. Parallax-Free Photography

When we take a photograph with a camera
consisting of a lens system and a film (which we
assume to be perpendicular to the axis of the lens
system), there is obviously only one plane in the
object space that has an object-image relation
with the film plane. We call this plane the main
object plane (MOP). Because of the finite size of
the aperture of the lens, any other plane is
reproduced on the film with a resolution that
decreases with increasing distance between the
plane under consideration and the MOP. When
we photograph an object that has a considerable
length in the axial direction, we can, under some
circumstances, have an additional loss of resolu-
tion because of the parallax. With this term we
describe the fact that, in normal photographic
techniques, the size of the reproduction of an
object plane on the film depends on the distance
between the object plane and the camera, be-
coming larger when that distance decreases. An

mop

p" Camera
aperture

F16. 19. Limitations of
resolution because of par-
allax and the size of the
\\! camera aperture.

example in which parallax can diminish or limit
the resolution is a plasma column that exhibits
the same luminosity pattern in all planes perpen-
dicular to the axis of the column. To better
understand both the limited resolution caused by
the finite camera aperture and the parallax, we
refer to Fig. 19, which illustrates the reproduc-
tion of a point source P that is not located in the
MOP. The dashed lines indicate the light cone
that is accepted by the camera aperture,” and
the solid line represents the center of this cone.
The intersection between the light cone and the
MOP is a circle with its center at P’. If point P
lies between the MOP and the camera, we work
with the backward extension of the light cone
and obtain an equivalent result. Since the MOP
has an object—-image relation with the film plane,
the reproduction of the point P on the film plane

7 In cases where the physical camera aperture is not in
front of the lens system, we mean by ‘‘camera aperture’ the
projection of the physical aperture into the object space,
i.e., the aperture as it appears from object space.
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is identical with this circle, except for the mag-
nification with which the image of the MOP is
formed on the film plane. We draw {rom this the
conclusion that the parallax, which in this case
amounts to the distance P'— P, depends only on
the location of the aperture; therefore, the
parallax can be completely eliminated if it is
possible to move the aperture, as seen from the
object space, to infinity. This requires that the
lens mount of the first lens of the optical system
that achieves this does not act as an aperture,
which implies that this first lens has to be some-
what larger in the radial direction than the
object. Since highly corrected systems with free
apertures of the order of 15 ¢cm are available as
war surplus material, this requirement is not
prohibitive for many experiments.

Before we go into the discussion of a system
that eliminates the parallax, we have to deter-
mine what should be the magnification m
(=image size: object size) and the full opening
angle « of the light cone of the system. If we keep
the exposure time constant, these two quantities
cannot be chosen independently if we want to
obtain a negative of a certain density; if a circle
with radius 7, in the MOP radiates with a given
power density o, the energy accepted by the
optical system during the exposure time ¢ is pro-
portional to of-7:2 a2 Since, with the magnifica-
tion m, the image of that circle has the radius
rs=mry, the energy density on the film plane be-
comes oir2a¥/r=ci-a?/m?. Since we keep the
exposure time ¢ constant a?/m? has to be constant.
To relate o?/m? to something familiar, we note
that if a photograph is taken with a camera from
a distance D that is large compared to the FL f
of the camera lens, which shall have the diameter
d,we have |a| =d/D and |m| = f/D. If we intro-
duce the f number N = f/d of the lens, we obtain®

a/m=1/N. (28)

To determine the best choice for m, we consider
the resolution that can be obtained if both the
resolution of the film and the opening angle of the
light cone are taken into account. To calculate
the resolution resulting from several sources, we
use the square root of the sum of the squares of
the individual resolutions; this is usually a good

8 For simplicity we omit the absolute value signs || from
here on.
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approximation. If we refer all resolutions to the
MOP, the resolution ¢ of the film leads to

Rezf/m- (293)

The resolution with which a plane at distance x
from the MOP is reproduced because of the
opening angle « of the light cone is given by a-x
(Fig. 20).We assume for simplicity that the
luminosity does not depend on the axial location
of the plane (as long as the plane is within the
boundaries of the object of length 2L) and that
the MOP is in the middle of the object; we then
obtain as the resulting resolution from all planes
by square superposition

L dx
R2= ] axt—,
0 L

and

Ro=aL/V3=mL/NV3. (29b)

The combined resolution R.= (R2+R32)* be-
comes a minimum for

m=(V3eN/L)3, (30a)
and for this value we obtain
Reo=(2eL/NV3)} (30b}
and
a=m/N= (e V3/NL)% (30c)

In the derivation of Egs. (30) we kept the
exposure time ¢ constant, which is appropriate
in many cases. If, however, the object exhibits
some motion, characterized by a velocity v, this
velocity can contribute to the over-all resolution
and should be taken into account, provided ¢ is
not fixed for some other reason. If we get a
properly exposed negative with the exposure time
ty and with ao/me=1/N,, the exposure time has
to be t=¢N/N¢& for a/m=N, provided the
reciprocity law holds. Associated with ¢ is the
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resolution R,=vt=9t0N?/N¢?. Combining R, with
R.. [Eq. (30b)7] through R, = (R2+ R, we
obtain a minimum of R, for

N =No(eL/2V302 N o)15, (31a)
and R., becomes
Rew= (2.5 ¢L/NV3)L. (31b)

The Eqgs. (30a) and (30c) are of course still valid.

To realize a parallax-free photographic system,
we need, as mentioned above, a first lens that has
a somewhat larger diameter than the object. The
simplest system is obtained by  placing the
camera behind this first lens so that the camera
aperture is in the FP of the first lens. Because of
its location, the aperture (of diameter a) appears
to be at infinity as seen from the object, and
extends the acceptance angle a=a/f;, where fi
is the FL of the first lens. Since the proposed lens
system is a doublet, we can use Fig. 14 and
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Fi1G. 21, Positions of the apertures in a spectrometer setup.

Eq. (22) for its description. In Fig. 14, RP; corre-
sponds to the MOP, and RP; corresponds to the
film plane. We use for the distance d the value
d= — f; because the aperture of the camera lens
is, in general, located fairly close to a PP of that
lens. Since the MOP and the film plane have an
object—image relation, we obtain the distance D,
between the FP of the camera lens and the film
plane by setting the upper-right matrix element
in Eq. (22) equal to zero, yielding

Dy= —Dif/ (f2D1+f1F).

Using this value for Ds in the upper-left element
of Eq. (22), we obtain for the magnification m

m=—(fo/ f)Lf2/ (foD1+ 1) 1.

Because one usually has only one lens big enough
to be used as lens 1, f; is given. Since .D;, in most
cases, is fixed within a fairly narrow limit by the
experimental conditions and enters in Eq. (33)

(32)

(33)

KLAUS HALBACH

only weakly, Eqgs. (33) and (30a) essentially
determine the FL of the camera. We conclude
from Eq. (32) that focusing on the MOP is
simple for D;<0, i.e., when the MOP lies be-
tween the first lens and its front FP. When D; >0,
focusing can become impossible with cameras
that do not allow us to bring the film plane much
closer to the lens than its back FP. Under these
circumstances one has to use an auxiliary lens
between the first lens and the camera. For con-
ceptual simplicity it is advisable to place that lens
in such a way that it forms together with the
first lens a telescope. Using the properties of the
telescope as derived in Sec. IVB, the design of
the system is straightforward and is omitted here.

G. Spectrometer Setup

Spectroscopy is a very important tool for
many scientific investigations and in many cases
the design of the optical system that connects the
spectrometer with the apparatus or specimen to
be diagnosed is by no means trivial. Because of
the tremendous variety of experimental condi-
tions it seems impossible to give a general theory
that takes into account all possible circumstances
of an experiment. We, therefore, discuss here only
one problem, which, however, is rather typical
for many experiments and requires the discussion
of many of the methods and techniques that
would also be useful for the analysis of other
experimental conditions. Since it becomes ob-
vious that we should distinguish between several
variants of this problem, depending upon the
numerical values of apertures and distances, we
use the values as they were encountered in an
actual experiment. This makes the method clear
enough to enable the reader to analyze the other
variants quite easily.

In the experiment, the object to be diagnosed
was a uniform plasma column D»=250 cm long,
accessible through a window of diameter d;=2.5
cm (schematically represented in RP; of Fig. 21).
In order to avoid the measurement of light that
is emitted from the walls, light should only be
admitted to the spectrometer that originates
from a cylinder of 2.5-cm diam. This can easily
be accomplished by introducing an aperture in
the optical system so that its projection is a
virtual aperture of d;=2.5-cm diam at the other
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end of the plasma column, which lies in RP, of
Fig. 21. The dimensions of the rectangular
entrance slit of the spectrometer were ;=2 cm
and e;=2.5X107% cm (schematically represented
in RP; of Fig. 21). The light.entering the spec-
trometer is further restricted by a mirror that
reflects the light onto a diffraction grating. The
mirror diameter d; is 5 cm and is separated by
1=350 ¢m from the entrance slit. The object of
this discussion is to find the optical system that,
with the given apertures, gives the maximal
amount of light for spectroscopic diagnosis.

For the determination of the light transmission
through a set of apertures, such as in this
problem, it is important to realize that the
amount of light transmitted through all apertures
from an infinite uniformly-illuminated plane is
independent of the distance between that plane
and the first physical aperture; this aperture is
in our case located in RP;. This independence
can easily be seen as follows: if we select a small
surface element in the first aperture and calculate
the angular distribution of the radiation going
through that surface element, neglecting all the
other apertures, we see that this radiation is
independent of the distance between that aper-
ture and the radiating plane. Since this holds for
all surface elements, we conclude that the amount
as well as the angular distribution of the radiation
going through the whole first aperture is also
independent of the distance between that aper-
ture and the radiating plane; thus, it follows that
the radiation going through the whole set of
apertures i1s independent of that distance too. If
a whole volume is radiating uniformly, we there-
fore have to consider only the transmission from
one plane or luminous slab; we can locate this
plane so that the calculation becomes as simple
as possible. If we have two apertures in RP; and
RP, of Fig. 21, spaced by a distance D,, the
obvious choice for the location of the radiating
plane is either RP; or RP,. If we locate the plane
in RPs, and the area of the aperture opening is
As, only the radiation from that area is trans-
mitted through the aperture in RP;. The amount
of radiation transmitted through both apertures
1s therefore proportional to 45 and the solid angle
that the aperture in RP,4 extends as seen from
RP;. If the area of the aperture in RP,4is 44, the
light transmission from this particular radiating
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plane, and therefore from any other plane or the
whole volume, is consequently proportional to

T'=A34,:/D. (34)
If apertures are in more than two RP’s, the cal-
culation of the transmission can become much
more complicated, since the solid angle defined
by two apertures as seen from the third aperture
is, in general, different for different surface ele-
ments of the third aperture.

In order to allow a simple determination of the
amount of light that is transmitted through the
given set of four apertures in RP; through RP,,
we project the apertures in RP, and RP; into
the space to the right-of the optical system. We
particularly require that the image of RP; falls
on RP; and that the image of RP, coincides with
RP,, since these seem to be the logical positions
for the images of RP; and RP; and because this
allows the application of the very simple Eq. (34).

Having the distance between the images of
RP; and RP, fixed in this way, we expect that
this establishes some correlation between the
possible magnifications 7, and m. with which the
images of RP; and RP; are formed. To determine
this correlation, we could directly apply the
expressions derived in Sec. VE. We prefer not to
use these results but rather derive the relation
betwen m, and m, in a straightforward way as one
would do if the results of Sec. VE were not
available.

Using the magnification m; with which the
image of RP; is formed at the location of RPs,
the matrix 4y; connecting ry and ry has to have

the form
W 0
44- 13=< )7
(1231 1/7%1

with a,; still undetermined,

(35)

To obtain the matrix 4, connecting r; and ry,

we have to multiply 4,; by (é —1D1> from the

1

right and by (O

112> from the left, yielding

i+ Doty Da/m1—D1(WL1+D2G/21)
an=( ) @)

[¢231 1/77’51“‘D1a21
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If we introduce the magnification #. with which
the image of RP; is formed in RP4, m, has to be
equal to the upper-left element of As,,

my=m1+Das (37a)

and the upper-right element of 4,4 has to vanish,
yielding the following relation between my, m,, Dy
and D,:

m1m2=D2/D1- (38)

We now use Eqs. (38) and (34) to determine the
magnifications m, and m, for optimal light trans-
mission. We choose |m;| as an independent
variable and see how T [Eq. (34)] depends on
|ms]. For |ms| <d4y/he=1.25, the image of the
slit in RP; is smaller than the aperture in RP,,
giving As=eho-mo? for the effective aperture
area in RP,. Since the image of the aperture in
RP; is larger than the aperture in RP;, the effec-
tive aperture area in RP; is 4;= (v/4)ds. Using
Eq. (34) we sce, therefore, that for |m,| <1.25,

TTom} T Img| T»vlm—l ‘
2
Fic. 22. Light
transmission I as a
function of |ms|
for a spectrometer
setup.
A
Y [FLI 10

T is proportional to m42. If |m.] increases beyond
1.25, lmz] - he>dsand A, grows only proportional
to |ms| whereas® A, is still given by (w/4)ds? as
long as the image of the aperture in RP; is larger
than the aperture in RP3. In this range of values
of ms, T is, therefore, proportional to |m.|. If
{m.| is increased beyond the point where the
image of the aperture in RP; just fits the aperture
in RP3(mid;<d;), the effective area of the
aperture in RP; becomes

A3=i7rm12d12= -1—7rd12 'D22/D12’WL22.

Since A, is still proportional to |#.|, T is from
there on proportional to 1/|m.|. From this be-
havior of T'(|m.]), which is schematically repre-
sented in Fig. 22, we see that we obtain a very
sharp and sensitive maximum of T for that value
of |ms| for which the image of the aperture in

9 Here and later we use the fact that ¢ is very small
compared to ds/m..
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RP, just fits the aperture in RP;. By using the
numerical values given above, this is the case for
|m1] =0.5 and |m,] =10.[It should be noted that
T'(|m.|) behaves differently when the numerical
values are such that the image of the slit in RP,
is still smaller than the aperture in RP,when the
image of the aperture in RP; fits the aperture
in RP;]. For the optimum value of |m,|, T
becomes

Tmax=%7r'd32'd4'62!m21/D22'

Using ds=ds=|m,|-d; and Eq. (38), we finally
get
Tmax=—i‘7rd32d1€2/D1D2.

The best value of |m;| determines as; and
therefore determines the FL of the optical system
by means of Eq. (37a), which can be rewritten as

an = (ms/Ds)[1— (m1/ms)]. (37b)

We expressed ay; intentionally in this way to
make the following point: While the sign of .,
and, therefore, a., is arbitrary and of no practical
significance, the sign of m./m. has to be the
same as the sign of mm., which is determined by
Eq. (38). Of course, D2/ D; is positive if the RP’s
actually have the relative position as indicated
in Fig. 21. It can, however, be practical to throw
the image of RP, on the RP farthest to the right
(where RP, is in Fig. 21) and RP, on the RP
close to the optical system (where RP; is in Fig.
21). Since this represents a reversal of the posi-
tions of RP; and RP,, it follows that, in this case,
D,, and consequently m;m, and my/ms, has a
negative sign, leading to a slightly different value
of |azi|. With the RP’s in the positions as in
Fig. 21 we obtain from Eq. (37b), after introduc-
tion of the numerical values introduced above,
|1/as1] =25/0.95~26.3 cm.

Comparison of Eq. (35) with Eq. (15) gives,
for the position of the rightsided FP with respect
to RP3,

my/@a1=D,{ (ml/m2)/[1 — (mym)]}. (39a)

Since the sign of my/m. is always the same
as the sign of D,, the right-sided FP of the
optical system lies always to the left of RPs
@Gf 1—my/m2>0). Analogously, for the position
of the leftsided FP of the optical system with
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respect to RP; we obtain

1 Dg/mum Dl

m1a21: 1— (ml/mg) N 1— (ml/m:»)

m1/m2
=Dl(1+——,—>. (39b)
1~ (my/m2)

With Egs. (37b) and (39), the optical system for
the attainment of maximal light transmission is
completely specified. If RP; and RP, are located
as in Fig. 21 and if the spectrometer can be
mounted close enough to the apparatus, a single
lens or a doublet can be sufficient to satisfy
Eqgs. (37b) and (39). If either one of these condi-
tions is not fulfilled, a system as described in
Sec. VC is very practical, particularly if one
wants to reverse the positions of RP; and RP..

In this whole discussion we assumed that the
images of RP; and RP: coincide with RP; and
RP,. Although it would be too involved to
describe the details here, it is fairly easy to show
by dislocating the images of RP; and RP; from
RP; and RP, that the optical system described
by Eqs. (37b) and (39) does give a maximum
for 7. It can, furthermore, be shown that
through the use of cylinder lenses, 7" cannot be
improved either.

H. Huygens’ Eyepiece

To demonstrate the use of matrices for the
discussion of chromatic aberrations, in this
section we derive the basic design of Huygens’
eyepiece, at. least as far as chromatic aberrations
are concerned. This eyepiece consists, for eco-
nomic reasons, of two thin lenses that are made
of the same glass; we have to choose these lenses
and the distance between them so that chromatic
aberrations are least objectionable.

A completely chromatically-corrected optical
system would be describable by a matrix whose
elements would be entirely independent of the
wavelength A of the light. Since the refractive
index 7 of all materials varies with A, this is, of
course, impossible. One, therefore, has to be
satisfied if the first derivative of the matrix
elements with respect to A vanishes not every-
where but for at least one or preferably more
wavelengths. Using Eq. (22) it is, however, easy
to show that it is impossible to design a doublet

107

of the kind described above in such a way that
the first derivatives of all matrix elements dis-
appear for a given wavelength. We, therefore,
have to investigate which chromatic aberrations
are most significant in the use of such an eyepiece
and then design the eyepiece accordingly.

An eyepiece is used to visually observe an
object that is projected into one FP of the eye-
piece by means of a chromatically well-corrected
objective. The image of an off-axis object point
can have two kinds of chromatic aberration: The
angle a; between the axis and the image point, as
seen with the eye, can depend on A, as well as
can the distance d, between the image and the
eye. If we identify the object plane and the plane
that goes through the front NP of the eye as RP,
and RP,, and if we describe the connection be-
tween ry and r; by a matrix as in Eq. (4) (of
course with #ny/#,=1), from Fig. 18 we can
directly obtain

g =— —7’1/&12 (408.)
and

dz = ""(llz/azg. (401))

We can draw from these relations the conclusion
that, for satisfactory chromatic correction of an
optical system used as an eyepiece, only @, =0
and g;,/=0 have to be fulfilled. (The prime
indicates differentiation with respect to X\.) For
the eyepiece discussed here, it is possible to show
with the help of Eq. (22) that these two condi-
tions cannot be satisfied simultaneously with
a+3;=10, which also has to be fulfilled at the refer-
ence wavelength A\ since the object is located in
the leftsided FP of the eyepiece. Since we can
achromatize either ds or as, we obviously choose
a, for achromatization; we make this choice be-
cause every off-axis object point would appear to
the eye as a line showing all colors of the spec-
trum if ao’'720 for all wavelengths of interest.
From Eq. (40a) it follows that o’ =0 for a;5’ =0.
Although we could try to satisfy a2’ =0 directly,
it is more convenient to use the fact that the
eye is always very close to the back FP of the
eyepiece, so that we can assume in very good
approximation that not only @:»=0 but also
a11=0 for A=\, If we differentiate the identity
a11@32—ay9t2 =1 with respect to A, we find that
{@11@45)" =0, although @:/'#0 and a@s.'#0, and
we obtain the result that a;)’=0 requires also
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that @+’ =0. Referring to Fig. 14 and Eq. (22),
we see that a,=d/f1fs. When we differentiate
this equation, we have to realize that the distance
d between the FP’s of the two lenses depends on
A. However, since the two lenses are assumed to
be thin, the positions of their PP’s are in very
good approximation independent of A, and the
distance between the PP’s of the two lenses is
practically the same as the distance D between
the lenses.
therefore,

A2 = (D"fl‘-fz)/flf2,

with D’=0. Moreover, because the two thin
lenses are made of the same glass, it is evident
from Eq. (5b) that u = fs/f1 is also independent
of A. Using this when we differentiate the
equation

an=(D—fi—f2)/f1f>
= (1/w){(D/f)~[A+u)/fr]},

we directly obtain from a»" =0 that D has to be
D= (fit+f2)/2. (41a)

This equation can obviously only be fulfilled for
one wavelength Ay, for which one chooses the
wavelength of maximum sensitivity of the eye.
With the spacing given by Eq. (41a), the FL of
the eyepiece becomes

F=2f1fo/ (fr+ fo).

With Eq. (22) the ifollowing statements can
easily be proven: If f,>0 and f,>0, only one
of the FP’s of the eyepiece is real. Since the eye
should be in or close to the back FP of the
eyepiece, this is the FP that should be accessible,

(41b)

With d‘:D—fl—fz we Obtaifl,,
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which is only and always the case when f;> fs.
Huygens’ original design is characterized by
Ji=3f:and consequently D=2f,and f= (3/2) fa.

When we calculate how d, depends on A, we
should work with 1/d, instead of d, directly
because ds(ho)= . If we expand 1/d. into a
Taylor series and take only the first nonvanishing
term, we obtain, with Eq. (40b),

(1/da)aarrar= (1/do)r=r, - AN

= —Ak'an'/alg. (423)

From Eq. (22) we see that as2 can be written as
ar2=Das1— f1/ fo.

Because as’ =0 and (f./f2)’ =0, we get

(43)

14 I3
@29’ =as Dy,

With the same consideration that led to the
introduction of D earlier, we see that Dy = — f
Since we are dealing with a thin lens, this can,
with the use of Eq. (5b), be expressed as Dy’
= fm'/(n—1). Using this and @s1(\e)-a12(No)
= —1in Eq. (43) and Eq. (42a), we obtain

(1/d2))\=>\°+A)\=0/212f1n’A7\/(n—1),
or, with a,.2=1/f2, we finally get
da(No+AN) = f- (f/fl) -(n—)1/n' AN

Without going into details here it might be
worthwhile to mention that, to the eye, the
apparent chromatic aberration resulting from
the effect described by Eq. (42b) is proportional
to the size of the exit pupil (depth of field
consideration), whereas the residual higher-order
chromatism in @2 is independent of the size of the
exit pupil.

(42b)



