1) What does the following program print?

```java
public class Mystery
{
    public static void main( String args[] )
    {
        int y;
        int x = 1;
        int total = 0;

        while ( x <= 10 )
        {
            y = x * x;
            System.out.println( y );
            total += y;
            ++x;
        } // end while

        System.out.printf( "Total is %d\n", total );
    } // end main
} // end class Mystery
```

2) Determine the output for each of the given sets of code when x is 9 and y is 11 and when x is 11 and y is 9. Note that the compiler ignores the indentation in a Java program. Also, the Java compiler always associates an else with the immediately preceding if unless told to do otherwise by the placement of braces ({}). On first glance, the programmer may not be sure which if an else matches—this situation is referred to as the “dangling-else problem.” We have eliminated the indentation from the following code to make the problem more challenging. [Hint: Apply the indentation conventions you have learned.]

a) if (x < 10)
if (y > 10)
System.out.println("*****");
else
System.out.println("#####");
System.out.println("$$$$");
b) if (x < 10)
{
 if (y > 10)
 System.out.println("*****");
 }
else
{
 System.out.println("#####");
 System.out.println("$$$$");
}
3) Write an application (Square.java) that prompts the user to enter the size of the side of a square, then displays a hollow square of that size made of asterisks. Your program should work for squares of all side lengths between 1 and 20. An example output for 15.

```
Enter length of side: 15
***************
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
*               *
***************
```

4) The factorial of a nonnegative integer n is written as n! (pronounced “n factorial”) and is defined as follows:

\[
 n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 \quad \text{for values of } n \geq 1
\]

and

\[
 n! = 1 \quad \text{for } n = 0
\]

For example, 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1, which is 120.

Write an application (Factorial.java) that reads a nonnegative integer and computes and prints its factorial. An example scenario

```
Enter a positive Integer: 14
14! is 1278945280
```

5) Write an application (Decimal.java) that inputs an integer containing only 0s and 1s (i.e., a binary integer) and prints its decimal equivalent. [Hint: Use the remainder and division operators to pick off the binary number’s digits one at a time, from right to left. In the decimal number system, the rightmost digit has a positional value of 1 and the next digit to the left has a positional value of 10, then 100, then 1000, and so on. The decimal number 234 can be interpreted as 4 \cdot 1 + 3 \cdot 10 + 2 \cdot 100. In the binary number system, the rightmost digit has a positional value of 1, the next digit to the left has a positional value of 2, then 4, then 8, and so on. The decimal equivalent of binary 1101 is 1 \cdot 1 + 0 \cdot 2 + 1 \cdot 4 + 1 \cdot 8, or 1 + 0 + 4 + 8 or, 13.] An example scenario

```
Enter a binary number: 11000000
Decimal is: 192
```