W3101-1 Programming Languages: Java
Assignment \#1 Due: March 2 11.59pm (Monday)

1) What does the following program print?

I public class Mystery
2 \{
3 public static void main(String args[])
4
5
6
7

```
        int y;
```

 int \(x=1\);
 int total \(=0\);
 while (\(x<=10\))
 \{
 \(y=x\) * \(x\);
 System.out.println(y);
 total \(+=y\);
 ++x;
 \} // end while
    ```
                System.out.printf( "Total is %d\n", total );
    } // end main
```

\} // end class Mystery
2) Determine the output for each of the given sets of code when x is 9 and y is 11 and when x is 11 and y is 9 . Note that the compiler ignores the indentation in a Java program. Also, the Java compiler always associates an else with the immediately preceding if unless told to do otherwise by the placement of braces ($\}$). On first glance, the programmer may not be sure which if an else matches-this situation is referred to as the "dangling-else problem." We have eliminated the indentation from the following code to make the problem more challenging. [Hint: Apply the indentation conventions you have learned.]

```
a) if ( x < 10 )
    if ( y > 10 )
    System.out.println( "*****" );
    else
    System.out.println( "#####" );
    System.out.println( "$$$$$" );
    if ( x < 10 )
    {
if ( y > 10 )
System.out.println( "*****" );
}
else
{
System.out.println( "#####" );
System.out.println( "$$$$$" );
}
```

3) Write an application (Square.java) that prompts the user to enter the size of the side of a square, then displays a hollow square of that size made of asterisks. Your program should work for squares of all side lengths between 1 and 20. An example output for 15 .
```
Enter length of side:15
***************
*
* *
* *
* *
* 
* *
* *
* 
* *
***************
```

4) The factorial of a nonnegative integer n is written as n ! (pronounced " n factorial") and is defined as follows:

and
```
n!=1(for n=0)
```

For example, $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$, which is 120 .
Write an application (Factorial.java) that reads a nonnegative integer and computes and prints its factorial. An example scenario
Enter a positive Integer: 14
14! is 1278945280
5) Write an application (Decimal.java) that inputs an integer containing only 0 s and 1 s (i.e., a binary integer) and prints its decimal equivalent. [Hint: Use the remainder and division operators to pick off the binary number's digits one at a time, from right to left. In the decimal number system, the rightmost digit has a positional value of 1 and the next digit to the left has a positional value of 10 , then 100 , then 1000 , and so on. The decimal number 234 can be interpreted as $4 * 1+3 * 10+2 * 100$. In the binary number system, the rightmost digit has a positional value of 1 , the next digit to the left has a positional value of 2 , then 4 , then 8 , and so on. The decimal equivalent of binary 1101 is $1 * 1+0 * 2+1 * 4+1 * 8$, or $1+0+4+8$ or, 13.] An example scenario

Enter a binary number: 11000000
Decimal is: 192

