Appendix A: Oren-Nayar Diffuse Reflectance Model

The Oren-Nayar reflectance model was designed for rough surfaces. The model is composed of two parts: the direct illumination component and the inter-reflection component. The direct illumination component in the radiance for this model is given by

$$
\begin{align*}
& \rho_{d}^{1}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma_{d}, K_{d}\right) \\
= & \frac{K_{d}}{\pi}\left[C_{1}\left(\sigma_{d}\right)+\cos \left(\phi_{r}-\phi_{i}\right) C_{2}\left(\alpha, \beta, \phi_{r}-\phi_{i}, \sigma_{d}\right) \tan \beta\right. \\
& \left.+\left(1-\left|\cos \left(\phi_{r}-\phi_{i}\right)\right|\right) C_{3}\left(\alpha, \beta, \sigma_{d}\right) \tan \left(\frac{\alpha+\beta}{2}\right)\right] \tag{1}
\end{align*}
$$

where,

$$
\begin{align*}
\alpha & =\max \left(\theta_{r}, \theta_{i}\right) \tag{2}\\
\beta & =\min \left(\theta_{r}, \theta_{i}\right) \tag{3}\\
C_{1} & =1-0.5 \frac{\sigma_{d}^{2}}{\sigma_{d}^{2}+0.33} \tag{4}\\
C_{2} & = \begin{cases}0.45 \frac{\sigma_{d}^{2}}{\sigma_{d}^{2}+0.09} \sin \alpha & \cos \left(\phi_{r}-\phi_{i}\right) \geq 0 \\
0.45 \frac{\sigma_{d}^{2}}{\sigma_{d}^{2}+0.09}\left(\sin \alpha-\left(\frac{2 \beta}{\pi}\right)^{3}\right) & \text { otherwise }\end{cases} \tag{5}\\
C_{3} & =0.125\left(\frac{\sigma_{d}^{2}}{\sigma_{d}^{2}+0.09}\right)\left(\frac{4 \alpha \beta}{\pi^{2}}\right)^{2} \tag{6}
\end{align*}
$$

The inter-reflection component is given by

$$
\begin{align*}
& \rho_{d}^{2}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma_{d}, K_{d}\right) \\
= & 0.17 \frac{K_{d}^{2}}{\pi} \frac{\sigma_{d}^{2}}{\sigma_{d}^{2}+0.13}\left[1-\cos \left(\phi_{r}-\phi_{i}\right)\left(\frac{2 \beta}{\pi}\right)^{2}\right] \tag{7}
\end{align*}
$$

These two components combine to give the total diffuse surface radiance.

$$
\begin{align*}
& \rho_{d}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma_{d}, K_{d}\right) \tag{8}\\
= & \rho_{d}^{1}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma_{d}, K_{d}\right)+\rho_{d}^{2}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; \sigma_{d}, K_{d}\right)
\end{align*}
$$

Appendix B: Torrance-Sparrow Specular Reflectance Model

The Torrance-Sparrow specular model is expressed by facet normal distribution, geometrical attenuation and fresnel reflection terms as

$$
\begin{equation*}
\rho_{s}=\frac{D \cdot G \cdot F}{4 \cos \theta_{i} \cos \theta_{r}} \tag{9}
\end{equation*}
$$

where D describes the distribution of facet normals over the surface and G is a geometrical attenuation factor.

$$
\begin{align*}
D= & e^{-\left(\theta_{h} / \sigma_{s}\right)^{2}} \tag{10}\\
G= & \max \left(0, \min \left(1, \frac{2 \cos \theta_{i} \cos \theta_{h}}{\cos \theta_{i} \cos \theta_{h}+\sin \theta_{i} \sin \theta_{h} \cos \left(\phi_{i}-\phi_{h}\right)},\right.\right. \\
& \left.\left.\frac{2 \cos \theta_{r} \cos \theta_{h}}{\cos \theta_{r} \cos \theta_{h}+\sin \theta_{r} \sin \theta_{h} \cos \left(\phi_{r}-\phi_{h}\right)}\right)\right) \tag{11}
\end{align*}
$$

F is the fresnel reflection term and depends on the refractive index n of the material. We have set the Fresnel term to 1 for convenience of measurement and fitting.

Appendix C: Top-lit Dust Reflectance Model

The dust reflectance $\rho_{\text {dust }}$ is from the top lit brightness function in Blinn's dust reflectance function which is given by

$$
\begin{equation*}
\rho_{d u s t}\left(\theta_{r}, \theta_{i}, \phi_{r}-\phi_{i} ; g, w_{r, g, b}\right)=w_{r, g, b} \Phi(\gamma) \frac{\cos \theta_{i}}{\left(\cos \theta_{i}+\cos \theta_{r}\right)} \tag{12}
\end{equation*}
$$

where γ is computed as the angle between the light and viewing ray. Φ is the popular HenyeyGreenstein phase function which describes the dependence of scattering on deviation angle γ.

$$
\begin{equation*}
\Phi(\gamma, g)=\frac{1-g^{2}}{\left(1+g^{2}-2 g \cos \gamma\right)^{3 / 2}} \tag{13}
\end{equation*}
$$

This is the equation of an ellipse in polar coordinates, centered at one focus. The parameter g is the eccentricity of the ellipse and is a property of the material. When g equals 0 , scattering is isotropic. When g is greater than 0 , it is predominantly forward scattering.

