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Abstract

We describe a generative model for graph edges under
specific degree distributions which admits an exact and effi-
cient inference method for recovering the most likely struc-
ture. This binary graph structure is obtained by refor-
mulating the inference problem as a generalization of the
polynomial time combinatorial optimization known asb-
matching. Standardb-matching recovers a constant-degree
constrained maximum weight subgraph from an original
graph instead of a distribution over degrees. After this map-
ping, the most likely graph structure can be found in cubic
time with respect to the number of nodes using max flow
methods. Furthermore, in some instances, the combina-
torial optimization problem can be solved exactly in near
quadratic time by loopy belief propagation and max prod-
uct updates even if the original input graph is dense. We
show an example application to post-processing of recom-
mender system predictions.

1 Introduction

An important task in graph analysis is estimating graph
structure given only partial information about nodes and
edges. This article will consider finding subgraphs from an
original (possibly fully connected and dense) graph, subject
to information about edges in terms of their weight as well
as degree distribution information for each node.

Consider a graphG = (V , E). Such a graph contains an
exponential number of subgraphs (graphs that can be ob-
tained from the original by performing edge deletion). In
fact, the number of subgraphs is2|E|, and since|E| can be up
to |V|(|V|−1)/2, search or probabilistic inference in such a
space may often be intractable. Working with a probability
distribution over such a large set of possibilities is not only
computationally difficult but may also be misleading since
some graph structures are known to be unlikelya priori.
This article proposes a particular distribution over graphs

that uses factorization assumptions and incorporates prior
distributions over node degrees. We performmaximum a
posteriori(MAP) estimation under this distribution by con-
verting the problem into a maximum weightb-matching.

This conversion method generalizes maximum weight
b-matching, which is applied to various classical applica-
tions such as advertisement allocation in search engines
[11], as well as machine learning applications such as semi-
supervised learning [7], and embedding of data and graphs
[17, 18]. Our method also generalizesbd-matching (which
itself is a generalization ofb-matching) andk-nearest neigh-
bors.

Previous efforts that exploit degree distribution informa-
tion to denoise edge observations have relied onapprox-
imate loopy belief propagation, which suffered from lo-
cal minima [12]. This article indicates that, in some set-
tings, MAP estimation over subgraphs with degree priors
can be solvedexactlyin polynomial time. Given our pro-
posed conversion method, which formulates the problem as
a b-matching, we can efficiently solve for the the optimal
graph structure estimate even with degree distribution in-
formation.

Applications of our proposed method include situations
in which degree information is inferred from statistical sam-
pling properties, from empirical methods in which degree
distributions are learned from data, or from more classi-
cal problems in which the degree probabilities are given.
An example of the latter case is in protein interaction pre-
diction, where 3D shape analysis can bound the number of
mutually accessible binding sites of a protein [8]. Similarly,
in some social network applications, the number of connec-
tions for each user may be known even though the explicit
identities of the users who are connected to them are hidden
(e.g., LinkedIn.com).

1.1 Outline

The remainder of the paper is organized as follows. In
Section 2, we derive the main algorithm for MAP graph es-
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timation with degree priors, prove its correctness, and dis-
cuss its computational cost and the methods it generalizes.
In Section 3, we demonstrate one application of the method
to post-processing graph predictions. Finally, we conclude
in Section 4 with a brief summary and discuss some possi-
ble alternative applications and future work.

2 MAP Edge Estimation

In this section, we provide the derivation and prove the
correctness of a method for maximizing a probability func-
tion defined over subgraphs. Using this method, we find
the optimum of a distribution defined by a concave poten-
tial function over node degrees in addition to the basic local
edge potentials. If we consider the degree potentials prior
probabilities over node degrees, the operation can be de-
scribed as amaximum a posteriorioptimization.

Formally, we are interested in finding a subgraph of an
original graphG = (V , E). First, consider a distribution
over all possible subgraphs that involves terms that factorize
across (a) edges (to encode independent edge weight) and
(b) degree distribution terms that tie edges together, pro-
ducing dependencies between edges. We assume the prob-
ability of any candidate edge setÊ ⊆ E is expressed as

Pr(Ê |G) ∝
∏

(i,j)∈Ê

expWij

∏

νi∈V

expψi

(

deg
(

νi, Ê
))

. (1)

The singleton edge potentials are represented by a ma-
trix W ∈ R

n×n whereWij is the gain in log-likelihood
when edge(i, j) is changed from off to on. The functions
ψi : {1, . . . , n} → R wherej ∈ {1, . . . n} are potentials
over the degrees of each node with respect to edgesÊ . In
other words, the probability of an edge structure depends on
local edge weight as well as a prior degree bias. Unfortu-
nately, due to the many dependencies implicated in each de-
gree distribution termψj , the probability model above has
large tree-width. Therefore, exact inference and naive MAP
estimation procedures (for instance, using the junction tree
algorithm) can scale exponentially with|V |. However, with
clever construction, exact MAP estimation is possible when
the degree potentials are concave.

2.1 Encoding as ab-matching

If we make the mild assumption that theψi functions in
Eq. 1 are concave, the probability of interest can be maxi-
mized by solving ab-matching. By concavity, we mean that
the change induced by increasing the input degree must be
monotonically non-increasing. This is the standard notion
of concavity ifψi is made continuous by linearly interpolat-

ing between integral degrees. Formally,

δψi(k) = ψi(k) − ψi(k − 1),

δ2ψi(k) = δψi(k) − δψi(k − 1)

= ψi(k) − ψi(k − 1) −

(ψi(k − 1) − ψi(k − 2)) ≤ 0.

When degree potentials are concave, we can exactly mimic
the probability functionPr(Ê |G) by building a larger graph
with corresponding probabilityPr(Êb|Gb).

Our construction proceeds as follows. First create a new
graphGb, which contains a copy of the original graphG as
well as additional dummy nodes denotedD. These dummy
nodes mimic the role of the soft degree potential functions
ψi. For each nodeνi in our original setV , we introduce
a set of dummy nodes. We add one dummy node for each
edge inE that is adjacent to eachνi. In other words, for
each nodeνi, we add dummy nodesdi,1, . . . , di,Ni where
Ni = deg(νi, E) is the size of the neighborhood of nodeνi.
Each of the dummy nodes indi,1, . . . , di,Ni is connected
to νi in the new graphGb. This construction creates graph
Gb = {Vb, Eb} defined as follows:

D = {d1,1, . . . , d1,N1 , . . . , dn,1, . . . , dn,Nn},

Vb = V ∪ D,

Eb = E ∪ {(νi, di,j)|1 ≤ j ≤ Ni, 1 ≤ i ≤ n}.

We next specify the weights of the edges inGb. The weight
of each edge(i, j) is copied fromE to its original potential
Wij . We set the edge weights between the original nodes
and dummy nodes according to the following formula. The
potential betweenνi and each dummy nodedi,j is

w(νi, di,j) = ψi(j − 1) − ψi(j). (2)

While theψ functions have outputs forψ(0), there are no
dummy nodes labeleddi,0 associated with that setting (ψ(0)
is only used when defining the weight ofdi,1). By con-
struction, the weightsw(νi, di,j) are monotonically non-
decreasing with respect to the indexj due to the concavity
of theψ functions. This characteristic leads to the guaran-
teed correctness of our method.

ψi(j) − ψi(j − 1) ≤ ψi(j − 1) − ψi(j − 2)

−w(νi, di,j) ≤ −w(νi, di,j−1)

w(νi, di,j) ≥ w(νi, di,j−1). (3)

We emulate the probabilityPr(Ê |G) (Eq. 1), which is over
edges inG, with a probabilityPr(Êb|Gb), which is over
edges ofGb. We set the degree constraints such that each
(original) nodeνi must have exactlyNi neighbors (includ-
ing any connected dummy nodes to which it might con-
nect). Dummy nodes have no degree constraints. The pro-
posed approach recovers the most likely subgraphÊb =
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Figure 1. Example of mapping a degree dependent problem to a h ard-constrained b-matching. Left:
Original weight matrix and row/column degree distribution s. Upper Middle: Weight matrix of ex-
panded graph, whose solution is now constrained to have exac tly 6 neighbors per node. Lower
Middle: Resulting b-matching, whose upper left quadrant is the final output. Rig ht: MAP solution
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Figure 2. The new weight matrix constructed by the procedure in Section 2. The upper left quadrant
is the original weight matrix, and the extra rows and columns are the weights for dummy edges.

argmaxÊb
Pr(Êb|Gb) by solving the followingb-matching

problem:

Êb = arg maxÊb⊆Eb

∑

(νi,di,j)∈Êb

w(νi, di,j) +
∑

(i,j)∈Êb

Wij

subject to deg(νi, Êb) = Ni for νi ∈ V . (4)

This construction can be conceptualized in the following
way: we are free to choose any graph structure in the orig-
inal graph, but pay a penalty based on node degrees due to
selecting dummy edges maximally. The following theorem
proves that this penalty is equivalent to that created by the
degree priors.

Theorem 1. The total edge weight ofb-matchings
Êb = argmaxÊb

log Pr(Êb|Gb) from graphGb differs from

log Pr(Êb ∩ E|G) by a fixed additive constant.

Proof. Consider the edgeŝEb ∩ E . These are the estimated
connectivity Ê after we remove dummy edges from̂Eb.
Since we set the weight of the original edges to theWij

potentials, the total weight of these edges is exactly the first
term in (1), the local edge weights.

What remains is to confirm that theψ degree potentials
agree with the weights of the remaining edgesÊb \ (Êb ∩E)
between original nodes and dummy nodes. Recall that our
degree constraints require each node inGb to have degree
Ni. By construction, eachνi has2Ni available edges from
which to choose:Ni edges from the original graph andNi

edges to dummy nodes. Moreover, ifνi selectsk original
edges, it must maximally selectNi−k dummy edges. Since
the dummy edges are constructed such that their weights
are non-decreasing, the maximumNi−k dummy edges are
to the lastNi − k dummy nodes, or dummy nodesdi,k+1

throughdi,Ni . Thus, we must verify the following:

Ni
∑

j=k+1

w(νi, di,j) −

Ni
∑

j=k′+1

w(νi, di,j)
?= ψi(k) − ψi(k

′).

Terms in the summations cancel out to show this equiva-
lence. After substituting the definition ofw(νi, di,j), the



desired equality is revealed.

Ni
∑

j=k+1

(ψi(j − 1) − ψi(j)) −

Ni
∑

j=k′+1

(ψi(j − 1) − ψi(j))

=

Ni
∑

j=k

ψi(j) −

Ni
∑

j=k+1

ψi(j) −

Ni
∑

j=k′

ψi(j) +

Ni
∑

j=k′+1

ψi(j)

= ψi(k) − ψi(k
′)

This means the log-probability and the weight of the new
graph change the same amount as we try different sub-
graphs ofG. Hence, for anyb-matchingÊb, the quantities
log Pr(Êb ∩E|G) andmaxÊb\E log Pr(Êb|Gb) differ only by
a constant.

2.2 Computational cost and generalized methods

Since the dummy nodes have no degree constraints, we
only need to instantiatemaxi(Ni) dummy nodes and reuse
them for each nodeνi. The process described in this sec-
tion is illustrated in Figures 2 and 1. This results in at most
a twofold increase of total nodes in the constructed graph
(i.e., |Vb| ≤ 2|V |). In practice, we can find the maximum
weight b-matching to maximizePr(Êb|Gb) using classical
maximum flow algorithms [2], which requireO(|Vb||Eb|)
computation time. However, in the special case of bipar-
tite graphs, we can use belief propagation [1, 5, 16], which
yields not only a rather large constant factor speedup, but
has been theoretically proven to find the solution in(|Vb|

2)
or (|Eb|) time under certain mild assumptions [15]. Further-
more, the algorithm can be shown to obtain exact solutions
in the unipartite case when linear programming integrality
can be established [16, 6].

The class of log-concave degree priors generalizes many
maximum weight constrained-subgraph problems. These
include simple thresholding of the weight matrix, which is
implemented by placing an exponential distribution on the
degree; setting the degree prior toψi(k) = −θk causes
the maximum to have edges on whenWij is greater than
thresholdθ. We can mimicb-matching by setting the de-
gree priors to be delta-functions at degreeb. We can mimic
bd-matching, which enforces lower and upper bounds on the
degrees, by setting the degree priors to be uniform between
the bounds and to have zero probability elsewhere. We can
mimic k-nearest neighbors by duplicating the nodes of the
graph to form a bipartite graph, where edges between nodes
in the original graph are represented by edges between bi-
partitions, and by setting the degrees of one bipartition to
exactlyk while having no constraints on the other biparti-
tion.

3 Experiments

We apply the MAP estimation algorithm as a post-
processing step in a graph prediction problem. Consider
the task of predicting a graph defined by the preferences of
users to items in a slight variation of the standard collabo-
rative filtering setting. We define a preference graph as a
bipartite graph between a set of usersU = {u1, . . . , un}
and a set of itemsV = {v1, . . . , vm} that the users have
rated with binary recommendations. We assume a rating
matrix Y = {0, 1}n×m representing the preferences of
users (rows) for items (columns). The rating matrixY is
equivalent to the adjacency matrix of the preference graph,
andYij = 1 indicates that useri approves of itemj while
Yij = 0 indicates that the user disapproves. The train-
ing data is a set of user-item pairs and whether an edge is
present between their nodes in the preference graph. The
testing data is another set of user-item pairs, and the task is
to predict which of the testing pairs will have a preference
edge present.

First, we provide motivation for using degree priors in
post-processing. The degrees of nodes in the predicted
graph represent the number of items liked by a user or the
number of users that like an item. Under certain assump-
tions, we can prove that the rate of liking or being liked will
concentrate around its empirical estimate, and the deviation
probability between training and testing rates is bounded by
a log-concave upper bound. Therefore, we will use the de-
viation bound as a degree prior to post-process predictions
output by a state of the art inference method. This, in effect,
forces our predictions to obey the bounds.

3.1 Concentration bound

We assume that usersU and itemsV are drawniid from
arbitrary population distributionsDu andDv. We also as-
sume that the probability of an edge between any nodesui

andvj is determined by a function that maps the features of
the nodes to a valid Bernoulli probability.

Pr(Yij = 1|ui, vj) = f(ui, vj) ∈ [0, 1]. (5)

These assumptions yield a natural dependency structure for
rating probabilities. The joint probability of users, items
and ratings is defined as follows:

Pr(Y, U, V |Du,Dv) ∝
∏

ij

p(Yij |ui, vj)
∏

i

p(ui|Du)
∏

j

p(vj |Dv). (6)

The structure of this generative model implies dependen-
cies between the unobserved ratings and even dependencies
between the users and movies. This is because the query
rating variables and all user and item variables are latent.
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Due to the independent sampling procedure on users and
items, this is known as a hierarchical model [3] and induces
a coupling, or interdependence, between the test predictions
that are to be estimated by the algorithm. Since the rating
variables exist in a lattice of common parents, this depen-
dency structure and the hierarchical model are difficult to
handle in a Bayesian setting unless strong parametric as-
sumptions are imposed. Instead, we next derive a bound
that captures the interdependence of the structured output
variablesY without parametric assumptions.

We assume that both the training and testing user-item
sets are completely randomly revealed from a set of volun-
teered ratings, which allows proof of an upper bound for the
probability that the empirical edge rate of a particular node
deviates between training and testing data. In other words,
we estimate the probability that an empirical row or col-
umn average in the adjacency matrix deviates from its true
mean. Without loss of generality, let the training ratings
for useri be at indices{1, . . . , ctr} and the testing ratings
be at indices{ctr + 1, . . . , ctr + cte} such that the training
and testing sets are respectively of sizectr and cte.1 Let
Ȳi = [Yi,1, . . . , Yi,ctr+cte ] represent the row of ratings by
useri. Let function∆(Ȳi) represent the difference between
the training and query averages. The following theorem
bounds the difference between training and testing rating

1We omit a subscript for the training and testing countsctr andcte for
notational clarity only. Since these counts vary for different nodes, precise
notation would involve terms such asctr

i
, cte

i
.

averages:

∆(Yi,1, . . . , Yi,ctr+cte) =
1

ctr

ctr
∑

j=1

Yij −
1

cte

ctr+cte
∑

j=ctr+1

Yij ,

which will obey the following theorem.

Theorem 2. Given that usersU = {u1, . . . , un} and rated
itemsV = {v1, . . . , vn} are drawniid from arbitrary dis-
tributions Du and Dv and that the probability of positive
rating by a user for an item is determined by a function
f(ui, vj) 7→ [0, 1], the average of query ratings by each
user is concentrated around the average of his or her train-
ing ratings. Formally,

Pr
(

∆(Ȳi) ≥ ǫ
)

≤ 2 exp

(

−
ǫ2ctrcte

2(ctr + cte)

)

, (7)

Pr
(

∆(Ȳi) ≤ −ǫ
)

≤ 2 exp

(

−
ǫ2ctrcte

2(ctr + cte)

)

.

The proof of Theorem 2 is deferred to Appendix A.
Using a standard learning method, we learn the estimates

of each edge. However, predicting the most likely setting of
each edge independently is equivalent to using a uniform
prior over the rating averages. However, a uniform prior vi-
olates the bound at a large enough deviation from the train-
ing averages. Specifically, this occurs for users or items
with a large number of training and testing examples. Thus,
it may be advantageous to use a prior that obeys the bound.



Since the bound decays quadratically in the exponent, pri-
ors that will never violate the bound must decay at a faster
rate. These exclude uniform and Laplace distributions and
include Gaussian, sub-Gaussian and delta distributions. We
propose simply using the normalized bound as a prior.

3.2 Edge weights

To learn reasonable values for the independent edge
weights, we employ Fast Max-Margin Matrix Factorization
(fMMMF) [14] using a logistic loss function, which has
a natural probabilistic interpretation [13]. In the binary-
ratings setting, the gradient optimization for logistic fM-
MMF, which uses a logistic loss as a differential approxi-
mation of hinge-loss, can be interpreted as maximizing the
conditional likelihood of a generative model that is very
similar to one discussed above. The objective is2

min
U,V

J(U, V ) =
1

2
(||U ||2Fro + ||V ||2Fro) + (8)

C
∑

ij

log
(

1 + e−Y
±

ij
(u⊤
i vj−θi)

)

.

The probability function for positive ratings is the logistic
function, which yields the exact loss term above.

Pr(Yij |ui, vj , θi) = f(ui, vj) =
1

1 + e−(u⊤
i

vj−θi)

Minimization of squared Frobenius norm corresponds to
placing zero-mean, spherical Gaussian priors on theui

andui vectors,Pr(ui) ∝ exp(− 1
C
||ui||

2) andPr(vj) ∝
exp(− 1

C
||vj ||

2). This yields the interpretation of fMMMF
as MAP estimation [13]:

max
U,V,Θ

∏

ij

P (Yij |ui, vj , θi)
∏

i

Pr(ui)
∏

j

Pr(vj).

Once we find the MAPU and V matrices using fM-
MMF, we use the logistic probabilities to set the single-
ton functions over edges (i.e., edge weights). Specifi-
cally, the weight of an edge is the change in log-likelihood
caused by switching the edge from inactive to active,
Wij = u⊤i vj − θi.

3.3 Results

Our experiments tested five data sets. Four are stan-
dard collaborative filtering datasets that we thresholded at
reasonable levels. The last is trust/distrust data gathered
from Epinions.com which represents whether users trust
other users’ opinions. The EachMovie data set contains

2HereY
±

ij
represents the signed{−1, +1} representation of the binary

rating, whereas previously, we use the{0, 1} representation.

2,811,983 integer ratings by 72,916 users for 1,628 movies
ranging from 1 to 6, which we threshold at 4 or greater to
represent a positive rating. The portion of the Jester data
set [4] we used contains 1,810,455 ratings by 24,983 users
for 100 jokes ranging from -10 to 10, which we threshold
at 0 or greater. The MovieLens-Million data set contains
1,000,209 integer ratings by 6,040 users for 3,952 movies
ranging from 1 to 5, which we threshold at 4 or greater. The
Book Crossing data set [19] contains 433,669 explicit in-
teger ratings3 by 77,805 users for 185,854 books ranging
from 1 to 10, which we threshold at 7 or greater. Lastly, the
Epinions data set [9] contains 841,372 trust/distrust ratings
by 84,601 users for 95,318 authors.

Each data set is split randomly three times into half train-
ing and half testing ratings. We randomly set aside1/5 of
the training set for cross-validation, and train logistic fM-
MMF on the remainder using a range of regularization pa-
rameters. The output of fMMMF serves as both our base-
line as well as the weight matrix of our algorithm. We set
the “degree” distribution for each row/column to be propor-
tional to the deviation bound from Theorem 2. Specifically,
we use the following formula to set the degree potentialψi:

ψi(k) = −λ

(

1
ctr

∑ctr

j=1 Yij − k/cte

)2

ctrcte

2(ctr + cte)
(9)

We introduce a regularization parameterλ that scales the
potentials. Whenλ is zero, the degree prior becomes uni-
form and the MAP solution is to threshold the weight matrix
at 0 (the default fMMMF predictions). At greater values, we
move from a uniform degree prior (default rounding) toward
strict b-matching, following the shape of the concentration
bound at intermediary settings. We explore increasing val-
ues ofλ starting at 0 until either the priors are too restrictive
and we observe overfitting or until the value ofλ is so great
that we are solving a simpleb-matching with degrees locked
to an integer value instead of a distribution of integers. In-
creasingλ thereafter will not change the result. We cross-
validate at this stage by including the testing and held-out
cross-validation ratings in the query set of ratings.

The running time of the post-processing procedure is
short compared to the time spent learning edge weights via
fMMMF. This is due to the fast belief propagation matching
code and the sparsity of the graphs. Each graph estimation
takes a few minutes (no more than five), while the gradient
fMMMF takes hours on these large-scale data sets.

We compare the zero-one error of prediction on the data.
In particular, we are interested in comparing the fMMMF
output that performed best on cross-validation data to the

3The Book Crossing data set contains many more “implicit” recom-
mendations, which occur when users purchase books but do notexplicitly
rate them. Presumably, these indicate positive opinions ofthe books; how-
ever, it is difficult to define a negative implicit rating, so we only experi-
ment on the explicit ratings.



Table 1. Average zero-one error rates and
standard deviations of best MAP with de-
gree priors and fMMMF chosen via cross-
validation. Average taken over three random
splits of the data sets into testing and train-
ing data. Degree priors improve accuracy on
all data sets, but statistically significant im-
provements according to a two-sample t-test
with a rejection level of 0.01 are bold.

Data set fMMMF Degree
EachMovie 0.3150± 0.0002 0.2976± 0.0001
Jester 0.2769± 0.0008 0.2744± 0.0021
MovieLens 0.2813± 0.0004 0.2770± 0.0005
BookCrossing 0.2704± 0.0016 0.2697± 0.0016
Epinions 0.1117± 0.0005 0.0932± 0.0003

MAP solution of the same output with additional degree pri-
ors. The results indicate that adding degree priors reduces
testing error on all splits of five data sets. The error rates
are represented graphically in Fig. 3 and numerically in Ta-
ble 1. With higherλ values, the priors pull the prediction
averages closer to the training averages, which causes over-
fitting on all but the Epinions data set. Interestingly, even
b-matching the Epinions data set improves the prediction
accuracy over fMMMF. This suggests that the way users
decide whether they trust other users is determined by a
process that is strongly concentrated. While choosing the
bound as a prior and the sampling assumptions made in this
article may be further refined in future work, it is impor-
tant to note that enforcing degree distribution propertieson
the estimated graph consistently helps improve the perfor-
mance of a state of the art factorization approach.

4 Discussion

We have provided a method to find the most likely
graph from a distribution that uses edge weight informa-
tion as well as degree distributions for each node. The exact
MAP estimate is computed in polynomial time by showing
that the problem is equivalent tob-matching or maximum
weight degree constrained subgraph problem. These can be
efficiently and exactly implemented using maximum flow as
well as faster belief propagation methods. Our method gen-
eralizesb-matching,bd-matching, simple thresholding, and
k-nearest neighbors which can all be viewed as graph struc-
ture estimation with different degree distributions. Various
methods that use either these simple degree distributions or
no degree information at all may benefit from generalizing
the degree information to allow for uncertainty. The main

limitation of the approach is that the degree distributions
that can be modeled in this way must be log-concave, thus
exact inference with more general degree distributions is an
open problem.
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Appendix A

Proof of Theorem 2.McDiarmid’s Inequality bounds the
deviation probability of a function over independent (but
not necessarily identical) random variables from its expec-
tation in terms of its Lipschitz constants [10], which are the
maximum change in the function value induced by chang-
ing any input variable. The Lipschitz constants for function
∆ areℓj = 1/ctr for 1 ≤ j ≤ ctr, andℓj = 1/cte oth-
erwise. Although the rating random variables are not iden-
tically distributed, they are independently sampled, so we
can apply McDiarmid’s Inequality (and simplify) to obtain

Pr
(

∆(Ȳi) − E[∆] ≥ t
)

≤ exp

(

−
2t2ctrcte
ctr + cte

)

(10)

The left-hand side quantity inside the probability contains
E[∆], which should be close to zero, but not exactly zero (if
it were zero, Eq. 10 would be the bound). Since our model
defines the probability ofYij as a function ofui andvj , the
expectation is

E
[

∆(Ȳi)
]

= E





1

ctr

ctr
∑

j=1

Yij −
1

cte

ctr+cte
∑

j=ctr+1

Yij





=
1

ctr

ctr
∑

j=1

f(ui, vj) −
1

cte

ctr+cte
∑

j=ctr+1

f(ui, vj)

def
= gi(V )

We define the quantity above as a function over the items
V = {v1, . . . , vctr+cte}, which we will refer to asgi(V )
for brevity. Because this analysis is of one user’s ratings,
we can treat the user inputui to f(ui, vj) as a constant.
Since the range of the probability functionf(ui, vi) is [0, 1],
the Lipschitz constants forgi(V ) areℓj = 1/ctr for 1 ≤
j ≤ ctr, andℓj = 1/cte otherwise. We apply McDiarmid’s
Inequality again.

Pr (gi(V ) − E[gi(V )] ≥ τ) ≤ exp

(

−
2τ2ctrcte
ctr + cte

)

.

The expectation ofgi(V ) can be written as the integral

E[gi(V )] =

∫

Pr(v1, . . . , vctr+cte)gi(V )dV.

Since thev’s areiid, the integral decomposes into

E[gi(V )] =
1

ctr

ctr
∑

j=1

∫

Pr(vj)f(ui, vj)dvj

−
1

cte

ctr+cte
∑

j=ctr+1

∫

Pr(vj)f(ui, vj)dvj .

Since eachPr(vj) = Pr(v) for all j, by a change of vari-
ables all integrals above are identical. The expected value
E[gi(V )] is therefore zero . This leaves a bound on the value
of gi(V ).

Pr (gi(V ) ≥ τ) exp

(

−
2τ2ctrcte
ctr + cte

)

To combine the bounds, we define a quantity to represent
the probability of each deviation. First, let the probability
of gi(V ) exceeding some constantτ be δ

2 .

δ

2
= exp

(

−
2τ2ctrcte
ctr + cte

)

Second, let the probability of∆(Ȳi) exceeding its expecta-
tion by more than a constantt also beδ

2 ,

δ

2
= exp

(

−
2t2ctrcte
ctr + cte

)

.

We can write botht andτ in terms ofδ:

t = τ =

√

ctr + cte

2ctrcte log 2
δ

.

Defineǫ as the concatenation of deviationst andτ ,

ǫ = t+ τ = 2

√

ctr + cte

2ctrcte log 2
δ

.

By construction, the total deviationǫ occurs with probabil-
ity greater thanδ. Solving forδ provides the final bound in
Eq. 7. The bound in the other direction follows easily since
McDiarmid’s Inequality is also symmetric.

Although the above analysis refers only to the ratings
of the user, the generative model we describe is symmetric
between users and items. Similar analysis therefore applies
directly to item ratings as well.

Corollary 1. Under the same assumptions as Theorem 2,
the average of query ratings for each item is concentrated
around the average of its training ratings.

Additionally, even though Theorem 2 specifically con-
cerns preference graphs, it can be easily extended to show
the concentration of edge connectivity in general unipartite
and bipartite graphs as follows.

Corollary 2. The concentration bound in Theorem 2 ap-
plies to general graphs; assuming that edges and non-edges
are revealed randomly, nodes are generatediid from some
distribution and the probability of an edge is determined by
a function of its vertices, the average connectivity of unob-
served (testing) node-pairs is concentrated around the av-
erage connectivity of observable (training) node-pairs. The
probability of deviation is bounded by the same formula as
in Theorem 2.


