Data Structures and
Algorithms

Session 7. February 11, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137

Announcements

% Added office hour: Nikhil Friday 10 AM-12 PM
* Homework 2 is up. Due Feb. 23
* Late Policy starting homework 2:
* 10% for each unexcused day late
* up to maximum 3 days; zero credit after 3 days

* Contact TA’'s when you submit late

Review

* (Header Nodes for Linked Lists)
* Stack Implementation recap
* Queues:

* Circular Array

loday’s Plan

* Lists, Stacks, Queues in Linux
* Introduction to Trees

* Definitions

* Tree Traversal Algorithms

* Binary Trees

Lists, Stacks, Queues In
LINUX

* Linux:
* processes stored in Linked List
* FIFO scheduler schedules jobs using queue

* function calls push memory onto stack

Drawbacks of Lists

¥ So far, the ADT’s we’ve examined have been linear
* O(N) for simple operations
* Can we do better?

* Recall binary search: log N for find :-)

* But list must be sorted. N log N to sort :~(

Trees

% Extension of Linked List structure:
* Each node connects to multiple nodes

* Examples include file systems, Java class
hierarchies

Iree Terminology

* Just like Lists, Trees are collections of nodes

* Conceptualize trees upside down (like family trees)
* the top node is the root
* nodes are connected by edges
* edges define parent and child nodes

% nodes with no children are called leaves

More Iree lerminology

* Nodes that share the same parent are siblings

* A path is a sequence of nodes such that the next
node in the sequence is a child of the previous

* a node’s depth is the length of the path from root
* the height of a tree is the maximum depth

* If a path exists between two nodes, one is an
ancestor and the other is a descendant

Tree Implementation

* Each node is part of a Linked List of siblings

* Additionally, each node stores a reference to its
children

¥ public class TreeNode {
Object element;
TreeNode firstChild;
TreeNode nextSibling;

}

Tree Traversals

* Suppose we want to print all the nodes in a tree
* What order should we visit the nodes?
* Preorder - read the parent before its children

* Postorder - read the parent after its children

Preorder vs. Postorder

* preorder(node Xx) * postorder(node x)
print(x) for child : Children
for child : Children postorder(child)

preorder(child) print(x)

Binary Irees

* Nodes can only have two children:
* left child and right child

* Simplifies implementation and logic

¥ public class BinaryNode {
Object element;
BinaryNode left;
BinaryNode right;

}

% Provides new inorder traversal

Inorder Traversal

* Read left child, then parent, then right child
* Essentially scans whole tree from left to right

* inorder(node x)
inorder(x.left)
print(x)
inorder(x.right)

Binary [ree Properties

* A binary tree is full if each node has 2 or 0 children

* A binary tree is perfect if it is full and each leaf is
at the same depth

* That depth is O(log N)

EXpression Irees

* Expression Trees are yet another way to store
mathematical expressions

* (X +y)*2)/300

* Note that the main mathematical operators have 2
operands each

% Inorder traversal reads back infix notation

* Postorder traversal reads postfix notation

Decision [rees

* It is often useful to design decision trees

* Left/right child represents yes/no answers to

questions
Hungry?

RN

Do nothing

Enough money?

/" O\

Chicken and Rice Subsconscious

Reading

* Weiss Section 4.3: Binary Search Trees

