Data Structures and
Algorithms

Session 3. January 28, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137




Announcements

* Homework 1 up on website (slight change)
* Due Feb. 9th before class
* Office Hour reminder

* My OH today after class (this week only)




Review

* Mathematical Review
* Exponential, log identities

* Proofs: straightforward proof, by induction,
contradiction

* Big-Oh: upper bound growth rate, invariant to
constants, limit as N grows to infinity

* Maximum Subsequence example (unfinished)




loday’s Plan

* Comments on homework
* Finish Big-Oh examples from previous slides
* Abstract Data Types
* Lists
* Array List Implementation
* Linked List Implementation

* Brief Intro to Java Collections API




Homework Notes:
Written Problems

* Hint for proofs (1.7 and 1.12): some are easier to
prove via induction

* Coming up with proofs and new algorithms takes
creativity. Sometimes it just won’t come to you:

* Take a break, come back to it later

* Try thinking of alternate but equivalent ways of
posing the problem




Homework Notes:
Programming

* All code in the book is fair game to re-use
* Selection problem:

* select(k) finds the kth largest number in an array
* Graphing class: need to run locally to see graphics

* | will post detailed instructions and an example
soon (today or tomorrow)




Abstract Data Types

* Defined by:
* What information it stores
* How the information is organized
* How the information can be accessed

* Doesn’t specify implementation




Vs. Implementation

* What information it stores

% What classes/types of variables
* How the information is organized

¥ How 1t 1s stored in memory
* How the information can be accessed

¥ What methods (and algorithms)




Abstract Data Type:
Lists

* An ordered series of objects
* Each object has a previous and next

* Except first has no previous, /last has no next
* We can insert an object to a list (at location k)
* We can remove an object from a list

* We can read an object from a list (location k)




Applications for Lists

* To Do: insert tasks, remove when done
* Word Processor:
* typing text inserts to list,
* deleting text removes (simple array won’t work)

* Shopping: insert needed items, remove when
bought




Array Implementation of
Lists

% 18t Hurdle: arrays have sizes

* Create bigger array when we run out of space,
copy old array to big array

% 2"d Hurdle: Inserting object anywhere but the end
* Shift all entries forward one. O(N)

* Get kth and insertion to end constant time O(1)




Linked List
Implementation

* Store list objects anywhere in memory
* Each object has a reference to its next object
* Insert at k requires T(get kth) + constant

* Insert to front is constant time

* T(get kth) = O(N), if naive




Linked Lists vs.
Array Lists

* Linked Lists * Array Lists
* No additional penalty * Need to estimate
on size size/grow array
* Insert/remove O(1)* * Insert/remove O(N)*
* get kth costs O(N)* * get kth costs O(1)
* Need some extra % Arrays are compact

memory for links INn memory




Lists In Java

¥ Collection Interface extends Iterable
* A Collection stores a group of objects
¥ We can add and remove from a Collection

* Iterator objects let us iterate over objects in a
Collection (also enhanced for loop)

* Built in LinkedList and ArrayList implementations
of Collection




Assignments

* Previous Reading: Ch. 1, Ch. 2, Sections 3.1-3.5

¥ Start homework




