
Data Structures and 
Algorithms
Session 3. January 28, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137



Announcements

Homework 1 up on website (slight change)

Due Feb. 9th before class

Office Hour reminder 

My OH today after class (this week only)



Review

Mathematical Review

Exponential, log identities

Proofs: straightforward proof, by induction, 
contradiction

Big-Oh: upper bound growth rate, invariant to 
constants, limit as N grows to infinity

Maximum Subsequence example (unfinished)



Today’s Plan
Comments on homework 

Finish Big-Oh examples from previous slides

Abstract Data Types

Lists

Array List Implementation

Linked List Implementation

Brief Intro to Java Collections API



Homework Notes: 
Written Problems
Hint for proofs (1.7 and 1.12): some are easier to 
prove via induction

Coming up with proofs and new algorithms takes 
creativity. Sometimes it just won’t come to you:

Take a break, come back to it later

Try thinking of alternate but equivalent ways of 
posing the problem



Homework Notes:
Programming
All code in the book is fair game to re-use

Selection problem: 

select(k) finds the kth largest number in an array

Graphing class: need to run locally to see graphics

I will post detailed instructions and an example 
soon (today or tomorrow)



Abstract Data Types

Defined by:

What information it stores

How the information is organized

How the information can be accessed 

Doesn’t specify implementation



Vs. Implementation

What information it stores

What classes/types of variables

How the information is organized

How it is stored in memory

How the information can be accessed 

What methods (and algorithms)



Abstract Data Type: 
Lists
An ordered series of objects

Each object has a previous and next

Except first has no previous, last has no next

We can insert an object to a list (at location k)

We can remove an object from a list

We can read an object from a list (location k)



Applications for Lists

To Do: insert tasks, remove when done

Word Processor: 

typing text inserts to list, 

deleting text removes (simple array won’t work)

Shopping: insert needed items, remove when 
bought



Array Implementation of 
Lists
1st Hurdle: arrays have sizes

Create bigger array when we run out of space, 
copy old array to big array

2nd Hurdle: Inserting object anywhere but the end

Shift all entries forward one. O(N)

Get kth and insertion to end constant time O(1)



Linked List 
Implementation

Store list objects anywhere in memory

Each object has a reference to its next object

Insert at k requires T(get kth) + constant

Insert to front is constant time

T(get kth) = O(N), if naïve



Linked Lists vs. 
Array Lists
Linked Lists

No additional penalty 
on size

Insert/remove O(1)* 

get kth costs O(N)*

Need some extra 
memory for links

Array Lists

Need to estimate 
size/grow array

Insert/remove O(N)*

get kth costs O(1)

Arrays are compact 
in memory



Lists in Java

Collection Interface extends Iterable

A Collection stores a group of objects

We can add and remove from a Collection

Iterator objects let us iterate over objects in a 
Collection (also enhanced for loop)

Built in LinkedList and ArrayList implementations 
of Collection



Assignments

Previous Reading: Ch. 1, Ch. 2, Sections 3.1-3.5

Start homework


