Announcements and Today’s Plan

- Final Exam Wednesday May 13th, 1:10 PM - 4 PM Mudd 633
- Course evaluation
- Review 2nd half of semester
- Lots of slides, I’ll go fast but ask questions if you have them
Final Topics Overview

- Big-Oh definitions (Omega, Theta)
- Arraylists/Linked Lists
- Stacks/Queues
- Binary Search Trees: AVL, Splay
- Tries
- Heaps
- Huffman Coding Trees
- Hash Tables: Separate Chaining, Probing
- Graphs: Topological Sort, Shortest Path, Max-Flow, Min Spanning Tree, Euler
- Complexity Classes
- Disjoint Sets
- Sorting: Insertion Sort, Shell Sort, Merge Sort, Quick Sort, Radix Sort, Quick Select
Big Oh Definitions

For \(N \) greater than some constant, we have the following definitions:

\[
T(N) = O(f(N)) \iff T(N) \leq cf(N)
\]

\[
T(N) = \Omega(g(N)) \iff T(N) \geq cf(N)
\]

\[
T(N) = \Theta(h(N)) \iff T(N) = O(h(N)),
\]
\[
T(N) = \Omega(h(N))
\]

There exists some constant \(c \) such that \(cf(N) \) bounds \(T(N) \).
Big Oh Definitions

- Alternately, $O(f(N))$ can be thought of as meaning
 \[T(N) = O(f(N)) \iff \lim_{N \to \infty} f(N) \geq \lim_{N \to \infty} T(N) \]

- Big-Oh notation is also referred to as asymptotic analysis, for this reason.
Huffman’s Algorithm

- Compute character frequencies
- Create forest of 1-node trees for all the characters.
- Let the weight of the trees be the sum of the frequencies of its leaves
- Repeat until forest is a single tree:
 Merge the two trees with minimum weight.
 Merging sums the weights.
Huffman Details

- We can manage the forest with a priority queue:
 - **buildHeap** first,
 - find the least weight trees with 2 **deleteMins**,
 - after merging, **insert** back to heap.
- In practice, also have to store coding tree, but the payoff comes when we compress larger strings
Hash Table ADT

- Insert or delete objects by **key**
- Search for objects by **key**
- **No** order information whatsoever
- Ideally O(1) per operation
Hash Functions

- A hash function maps any key to a valid array position.
- Array positions range from 0 to N-1.
- Key range possibly unlimited.

```
1  2  3  4  5  6  ...  K-3  K-2  K-1  K
0  1  ...  N-2  N-1
```
Hash Functions

- For integer keys, \((\text{key mod N})\) is the simplest hash function.
- In general, any function that maps from the space of keys to the space of array indices is valid.
- But a good hash function spreads the data out evenly in the array.
- A good hash function avoids collisions.
Collisions

- A **collision** is when two distinct keys map to the same array index

 - e.g., \(h(x) = x \mod 5 \)

 \[
 h(7) = 2, \quad h(12) = 2
 \]

- Choose \(h(x) \) to minimize collisions, but collisions are inevitable

- To implement a hash table, we must decide on collision resolution policy
Collision Resolution

- Two basic strategies
 - Strategy 1: Separate Chaining
 - Strategy 2: Probing; lots of variants
Strategy 1: Separate Chaining

- Keep a list at each array entry
 - Insert(x): find h(x), add to list at h(x)
 - Delete(x): find h(x), search list at h(x) for x, delete
 - Search(x): find h(x), search list at h(x)
- We could use a BST or other ADT, but if h(x) is a good hash function, it won’t be worth the overhead
Strategy 2: Probing

- If $h(x)$ is occupied, try $h(x) + f(i) \mod N$
 for $i = 1$ until an empty slot is found
- Many ways to choose a good $f(i)$
- Simplest method: Linear Probing
 - $f(i) = i$
Primary Clustering

- If there are many collisions, blocks of occupied cells form: **primary clustering**

- Any hash value inside the cluster adds to the end of that cluster

- (a) it becomes more likely that the next hash value will collide with the cluster, and (b) collisions in the cluster get more expensive
Quadratic Probing

- $f(i) = i^2$
- Avoids primary clustering
- Sometimes will never find an empty slot even if table isn’t full!
- Luckily, if load factor $\lambda \leq \frac{1}{2}$, guaranteed to find empty slot
Double Hashing

- If $h_1(x)$ is occupied, probe according to
 $$f(i) = i \times h_2(x)$$

- 2nd hash function must never map to 0

- Increments differently depending on the key
Rehashing

- Like ArrayLists, we have to guess the number of elements we need to insert into a hash table.
- Whatever our collision policy is, the hash table becomes inefficient when load factor is too high.
- To alleviate load, **rehash**:
 - create larger table, scan current table, insert items into new table using new hash function.
Graph Terminology

- A graph is a set of nodes and edges
 - nodes aka vertices
 - edges aka arcs, links
- Edges exist between pairs of nodes
 - if nodes x and y share an edge, they are adjacent
Graph Terminology

- Edges may have **weights** associated with them
- Edges may be **directed** or **undirected**
- A **path** is a series of adjacent vertices
 - the **length** of a path is the sum of the edge weights along the path (1 if unweighted)
- A **cycle** is a path that starts and ends on a node
Graph Properties

- An undirected graph with no cycles is a tree
- A directed graph with no cycles is a special class called a **directed acyclic graph (DAG)**
- In a **connected** graph, a path exists between every pair of vertices
- A **complete** graph has an edge between every pair of vertices
Implementation

* Option 1:
 * Store all nodes in an indexed list
 * Represent edges with *adjacency matrix*

* Option 2:
 * Explicitly store *adjacency lists*
Topological Sort

- Problem definition:
 - Given a directed acyclic graph G, order the nodes such that for each edge $(v_i, v_j) \in E$, v_i is before v_j in the ordering.

- e.g., scheduling errands when some tasks depend on other tasks being completed.
Topological Sort
Better Algorithm

1. Compute all indegrees
2. Put all indegree 0 nodes into a Collection
3. Print and remove a node from Collection
4. Decrement indegrees of the node’s neighbors.
5. If any neighbor has indegree 0, place in Collection. Go to 3.
Topological Sort
Running time

- Initial indegree computation: $O(|E|)$
 - Unless we update indegree as we build graph
- $|V|$ nodes must be enqueued/dequeued
- Dequeue requires operation for outgoing edges
- Each edge is used, but never repeated
- Total running time $O(|V| + |E|)$
Shortest Path

Given $G = (V,E)$, and a node $s \in V$, find the shortest (weighted) path from s to every other vertex in G.

Motivating example: subway travel

- Nodes are junctions, transfer locations
- Edge weights are estimated time of travel
Breadth First Search

- Like a level-order traversal
- Find all adjacent nodes (level 1)
- Find *new* nodes adjacent to level 1 nodes (level 2)
- ... and so on
- We can implement this with a queue
Unweighted Shortest Path Algorithm

- Set node s’ distance to 0 and enqueue s.
- Then repeat the following:
 - Dequeue node v. For unset neighbor u:
 - set neighbor u’s distance to v’s distance +1
 - mark that we reached v from u
 - enqueue u
Weighted Shortest Path

- The problem becomes more difficult when edges have different weights
- Weights represent different costs on using that edge
- Standard algorithm is Dijkstra’s Algorithm
Dijkstra’s Algorithm

* Keep distance overestimates $D(v)$ for each node v (all non-source nodes are initially infinite)

* 1. Choose node v with smallest unknown distance

* 2. Declare that v’s shortest distance is known

* 3. Update distance estimates for neighbors
Updating Distances

For each of v’s neighbors, w,

if \(\min(D(v) + \text{weight}(v,w), D(w)) \)

i.e., update \(D(w) \) if the path going through v is cheaper than the best path so far to w
Proof by Contradiction (Sketch)

- Contradiction: Dijkstra’s finds a shortest path to node w through v, but there exists an even shorter path.
- This shorter path must pass from inside our known set to outside.
- Call the 1st node in cheaper path outside our set u.
- The path to u must be shorter than the path to w.
- But then we would have chosen u instead.
Computational Cost

- Keep a priority queue of all unknown nodes
- Each stage requires a `deleteMin`, and then some `decreaseKeys` (the # of neighbors of node)
- We call `decreaseKey` once per edge, we call `deleteMin` once per vertex
- Both operations are $O(\log |V|)$
- Total cost: $O(|E| \log |V| + |V| \log |V|) = O(|E| \log |V|)$
All Pairs Shortest Path

- Dijkstra’s Algorithm finds shortest paths from one node to all other nodes
- What about computing shortest paths for all pairs of nodes?
- We can run Dijkstra’s $|V|$ times. Total cost: $O(|V|^3)$
- Floyd-Warshall algorithm is often faster in practice (though same asymptotic time)
Recursive Motivation

- Consider the set of numbered nodes 1 through k
- The shortest path between any node i and j using only nodes in the set {1, ..., k} is the minimum of
 - shortest path from i to j using nodes {1, ..., k-1}
 - shortest path from i to j using node k
- \(\text{path}(i,j,k) = \min(\text{path}(i,j,k-1), \text{path}(i,k,k-1) + \text{path}(k,j,k-1)) \)
Dynamic Programming

- Instead of repeatedly computing recursive calls, store lookup table
- To compute path(i,j,k) for any i,j, we only need to look up path(-,-, k-1)
 - but never k-2, k-3, etc.
- We can incrementally compute the path matrix for k=0, then use it to compute for k=1, then k=2...
Floyd-Warshall Code

- Initialize \(d = \) weight matrix

- for \((k=0; k<N; k++) \)
 - for \((i=0; i<N; i++) \)
 - for \((j=0; j<N; j++) \)
 - if \((d[i][j] > d[i][k] + d[k][j]) \)
 - \(d[i][j] = d[i][k] + d[k][j] \);

- Additionally, we can store the actual path by keeping a “midpoint” matrix
Transitive Closure

- For any nodes i, j, is there a path from i to j?
- Instead of computing shortest paths, just compute Boolean if a path exists
- $\text{path}(i,j,k) = \text{path}(i,j,k-1) \lor \text{path}(i,k,k-1) \land \text{path}(k,j,k-1)$
Maximum Flow

- Consider a graph representing flow capacity
- Directed graph with source and sink nodes
- Physical analogy: water pipes
 - Each edge weight represents the capacity: how much “water” can run through the pipe from source to sink?
Max Flow Algorithm

- Create 2 copies of original graph: flow graph and residual graph
- The flow graph tells us how much flow we have currently on each edge
- The residual graph tells us how much flow is available on each edge
- Initially, the residual graph is the original graph
Augmenting Path

* Find any path in residual graph from source to sink
called an **augmenting path**.

* The minimum weight along path can be added as flow to the flow graph

* But we don’t want to commit to this flow; add a reverse-direction undo edge to the residual graph
Running Times

- If integer weights, each augmenting path increases flow by at least 1
- Costs $O(|E|)$ to find an augmenting path
- For max flow f, finding max flow (Floyd-Fulkerson) costs $O(f|E|)$
- Choosing shortest unweighted path (Edmonds-Karp), $O(|V||E|^2)$
Minimum Spanning Tree

Problem definition

- Given connected graph G, find the connected, acyclic subgraph T with minimum edge weight
- A tree that includes every node is called a spanning tree
- The method to find the MST is another example of a greedy algorithm
Motivation for Greed

- Consider any spanning tree
- Adding another edge to the tree creates exactly one cycle
- Removing an edge from that cycle restores the tree structure
Prim’s Algorithm

- Grow the tree like Dijkstra’s Algorithm
- Dijkstra’s: grow the set of vertices to which we know the shortest path
- Prim’s: grow the set of vertices we have added to the minimum tree
- Store shortest edge $D[\]$ from each node to tree
Prim’s Algorithm

- Start with a single node tree, set distance of adjacent nodes to edge weights, infinite elsewhere
- Repeat until all nodes are in tree:
 - Add the node \(v \) with shortest known distance
 - Update distances of adjacent nodes \(w \):
 \[
 D[w] = \min(D[w], \text{weight}(v,w))
 \]
Prim’s Algorithm
Justification

- At any point, we can consider the set of nodes in the tree T and the set outside the tree Q.
- Whatever the MST structure of the nodes in Q, at least one edge must connect the MSTs of T and Q.
- The greedy edge is just as good structurally as any other edge, and has minimum weight.
Prim’s Running Time

- Each stage requires one deleteMin $O(\log |V|)$, and there are exactly $|V|$ stages.
- We update keys for each edge, updating the key costs $O(\log |V|)$ (either an insert or a decreaseKey).
- Total time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$
Kruskal’s Algorithm

- Somewhat simpler conceptually, but more challenging to implement

- Algorithm: repeatedly add the shortest edge that does not cause a cycle until no such edges exist

- Each added edge performs a union on two trees; perform unions until there is only one tree

- Need special ADT for unions (Disjoint Set... we’ll cover it later)
Kruskal’s Justification

- At each stage, the greedy edge e connects two nodes v and w
- Eventually those two nodes must be connected;
 - we must add an edge to connect trees including v and w
- We can always use e to connect v and w, which must have less weight since it's the greedy choice
Kruskal’s Running Time

- First, buildHeap costs $O(|E|)$
- In the worst case, we have to call $|E|$ deleteMins
- Total running time $O(|E| \log |E|)$; but $|E| \leq |V|^2$

\[O(|E| \log |V|^2) = O(2|E| \log |V|) = O(|E| \log |V|) \]
The Seven Bridges of Königsberg

Königsburg Bridge Problem: can one walk across the seven bridges and never cross the same bridge twice?

Euler solved the problem by inventing graph theory

http://math.dartmouth.edu/~euler/docs/originals/E053.pdf
Euler Paths and Circuits

- Euler path – a (possibly cyclic) path that crosses each edge exactly once
- Euler circuit - an Euler path that starts and ends on the same node
Euler’s Proof

- Does an Euler path exist? **No**
- Nodes with an odd degree must either be the start or end of the path
- Only one node in the Königsberg graph has odd degree; the path cannot exist
- What about an Euler circuit?
Finding an Euler Circuit

- Run a partial DFS; search down a path until you need to backtrack (mark edges instead of nodes)
- At this point, you will have found a circuit
- Find first node along the circuit that has unvisited edges; run a DFS starting with that edge
- Splice the new circuit into the main circuit, repeat until all edges are visited
Euler Circuit Running Time

- All our DFS's will visit each edge once, so at least \(O(|E|) \)

- Must use a linked list for efficient splicing of path, so searching for a vertex with unused edge can be expensive

- but cleverly saving the last scanned edge in each adjacency list can prevent having to check edges more than once, so also \(O(|E|) \)
Complexity Classes

- **P** - solvable in polynomial time
- **NP** - solvable in polynomial time by a nondeterministic computer, i.e., you can check a solution in polynomial time
- **NP-complete** - a problem in NP such that any problem in NP is polynomially reducible to it
- **Undecidable** - no algorithm can solve the problem
Probable Complexity
Class Hierarchy

P

NP

NP-Complete

NP-Hard

Undecidable
Polynomial Time \(P \)

- All the algorithms we cover in class are solvable in polynomial time.
- An algorithm that runs in polynomial time is considered \textit{efficient}.
- A problem solvable in polynomial time is considered \textit{tractable}.
Nondeterministic Polynomial Time \textbf{NP}

- Consider a magical nondeterministic computer
 - infinitely parallel computer
- Equivalently, to solve any problem, check every possible solution in parallel
 - return one that passes the check
NP-Complete

- Special class of NP problems that can be used to solve any other NP problem
- Hamiltonian Path, Satisfiability, Graph Coloring etc.
- NP-Complete problems can be reduced to other NP-Complete problems:
 - polynomial time algorithm to convert the input and output of algorithms
NP-Hard

- A problem is NP-Hard if it is at least as complex as all NP-Complete problems.
- NP-hard problems may not even be NP.
NP-Complete Problems
Satisfiability

- Given Boolean expression of N variables, can we set variables to make expression true?
- First NP-Complete proof because Cook's Theorem gave polynomial time procedure to convert any NP problem to a Boolean expression
- I.e., if we have efficient algorithm for Satisfiability, we can efficiently solve any NP problem
NP-Complete Problems
Graph Coloring

Given a graph is it possible to color with \(k \) colors all nodes so no adjacent nodes are the same color?

Coloring countries on a map

Sudoku is a form of this problem. All squares in a row, column and blocks are connected. \(k = 9 \)
NP-Complete Problems

Hamiltonian Path

Given a graph with N nodes, is there a path that visits each node exactly once?
NP-Hard Problems
Traveling Salesman

- Closely related to Hamiltonian Path problem
- Given complete graph G, find a path that visits all nodes that costs less than some constant k
- If we are able to solve TSP, we can find a Hamiltonian Path; set connected edge weight to constant, disconnected to infinity
- TSP is NP-hard
An equivalence relation is a relation operator that observes three properties:

- **Reflexive**: \((a \ R \ a)\), for all \(a\)
- **Symmetric**: \((a \ R \ b)\) if and only if \((b \ R \ a)\)
- **Transitive**: \((a \ R \ b)\) and \((b \ R \ c)\) implies \((a \ R \ c)\)

Put another way, equivalence relations check if operands are in the same *equivalence class*.
Equivalence Classes

- Equivalence class: the set of elements that are all related to each other via an equivalence relation.
- Due to transitivity, each member can only be a member of one equivalence class.
- Thus, equivalence classes are disjoint sets.
- Choose any distinct sets S and T, \(S \cap T = \emptyset \).
Disjoint Set ADT

- Collection of objects, each in an equivalence class
- `find(x)` returns the class of the object
- `union(x,y)` puts x and y in the same class
 - as well as every other relative of x and y
- Even less information than hash; no keys, no ordering
Data Structure

- Store elements in equivalence (general) trees
- Use the tree’s root as equivalence class label
- **find** returns root of containing tree
- **union** merges tree
- Since all operations only search up the tree, we can store in an array
Implementation

- Index all objects from 0 to N-1
- Store a parent array such that $s[i]$ is the index of i’s parent
- If i is a root, store the negative size of its tree*
- **find** follows $s[i]$ until negative, returns index
- **union**(x,y) points the root of x’s tree to the root of y’s tree
Analysis

- **find** costs the depth of the node
- **union** costs $O(1)$ after finding the roots
- Both operations depend on the height of the tree
- Since these are general trees, the trees can be arbitrarily shallow
Union by Size

- Claim: if we union by pointing the smaller tree to the larger tree’s root, the height is at most $\log N$
- Each union increases the depths of nodes in the smaller trees
- Also puts nodes from the smaller tree into a tree at least twice the size
- We can only double the size $\log N$ times
Union by Height

- Similar method, attach the tree with less height to the taller tree
- Shorter tree’s nodes join a tree at least twice the height, overall height only increases if trees are equal height
Union by Height Figure

1. b
 a
 c
d
g

2. f
 e

2. f
 e
 a
 c
 d
g
Path Compression

- Even if we have $\log N$ tall trees, we can keep calling `find` on the deepest node repeatedly, costing $O(M \log N)$ for M operations.

- Additionally, we will perform **path compression** during each `find` call.

- Point every node along the find path to root.
Path Compression

Figure
Union by Rank

- Path compression messes up union-by-height because we reduce the height when we compress

- We could fix the height, but this turns out to gain little, and costs find operations more

- Instead, rename to union by rank, where rank is just an overestimate of height

- Since heights change less often than sizes, rank/height is usually the cheaper choice
A slightly looser, but easier to prove/understand bound is that any sequence of operations will cost $O(M \log^* N)$ running time.

$log^* N$ is the number of times the logarithm needs to be applied to N until the result is ≤ 1.

Proof idea: upper bound the number of nodes per rank, partition ranks into groups.
Sorting

Given array A of size N, reorder A so its elements are in order.

"In order" with respect to a consistent comparison function
The Bad News

- Sorting algorithms typically compare two elements and branch according to the result of comparison.
- Theorem: An algorithm that branches from the result of pairwise comparisons must use $\Omega(N \log N)$ operations to sort worst-case input.
- Proof via decision tree.
Counting Sort

- Another simple sort for integer inputs
- 1. Treat integers as array indices (subtract min)
- 2. Insert items into array indices
- 3. Read array in order, skipping empty entries
Bucket Sort

- Like Counting Sort, but less wasteful in space
- Split the input space into k buckets
- Put input items into appropriate buckets
- Sort the buckets using favorite sorting algorithm
Radix Sort

- Trie method and CountingSort are forms of Radix Sort
- Radix Sort sorts by looking at one digit at a time
- We can start with the least significant digit or the most significant digit
 - least significant digit first provides a stable sort
 - trie's use most significant, so let's look at least...
Radix Sort with Least Significant Digit

- CountingSort according to the least significant digit
- Repeat: CountingSort according to the next least significant digit
- Each step must be stable
- Running time: $O(Nk)$ for maximum of k digits
- Space: $O(N+b)$ for base-b number system*
Comparison Sort Characteristics

- Worst case running time
- Worst case space usage (can it run in place?)
- Stability
- Average running time/space
- (simplicity)
Insertion Sort

- Assume first p elements are sorted. Insert $(p+1)\text{th}$ element into appropriate location.

- Save $A[p+1]$ in temporary variable t, shift sorted elements greater than t, and insert t

- **Stable**

- **Running time** $O(N^2)$

- **In place** $O(1)$ space
Insertion Sort Analysis

- When the sorted segment is i elements, we may need up to i shifts to insert the next element.

$$\sum_{i=2}^{N} i = \frac{N(N - 1)}{2} - 1 = O(N^2)$$

- Stable because elements are visited in order and equal elements are inserted after its equals.

- Algorithm Animation
Shellsort

- Essentially splits the array into subarrays and runs Insertion Sort on the subarrays
- Uses an increasing sequence, h_1, \ldots, h_t, such that $h_1 = 1$.
- At phase k, all elements h_k apart are sorted; the array is called h_k-sorted
- for every i, $A[i] \leq A[i + h_k]$

Shell Sort Correctness

- Efficiency of algorithm depends on that elements sorted at earlier stages remain sorted in later stages

- Unstable. Example: 2-sort the following: [5 5 1]
Increment Sequences

- Shell suggested the sequence $h_t = \lfloor N/2 \rfloor$ and $h_k = \lfloor h_{k+1}/2 \rfloor$, which was suboptimal.
- A better sequence is $h_k = 2^k - 1$.
- Shellsort using better sequence is proven $\Theta(N^{3/2})$.
- Often used for its simplicity and sub-quadratic time, even though $O(N \log N)$ algorithms exist.
- Animation
Heapsort

- Build a **max** heap from the array: $O(N)$
- call deleteMax N times: $O(N \log N)$
- $O(1)$ space
- Simple if we abstract heaps
- Unstable
- Animation
Mergesort

- Quintessential divide-and-conquer example
- Mergesort each half of the array, merge the results
- Merge by iterating through both halves, compare the current elements, copy lesser of the two into output array
- Animation
Mergesort Recurrence

- Merge operation is costs $O(N)$
- $T(N) = 2 \cdot T(N/2) + N$
- We solved this recurrence for the recursive solutions to the homework 1 theory problem

$$
\begin{align*}
\log N &= \sum_{i=0}^{\log N} 2^i c \frac{N}{2^i} \\
&= \sum_{i=0}^{\log N} cN = cN \log N
\end{align*}
$$
Quicksort

- Choose an element as the **pivot**
- Partition the array into elements greater than pivot and elements less than pivot
- Quicksort each partition
Choosing a Pivot

- The worst case for Quicksort is when the partitions are of size zero and $N-1$.
- Ideally, the pivot is the median, so each partition is about half.
- If your input is random, you can choose the first element, but this is very bad for presorted input!
- Choosing randomly works, but a better method is...
Median-of-Three

- Choose three entries, use the median as pivot
- If we choose randomly, $2/N$ probability of worst case pivots
- Median-of-three gives 0 probability of worst case, tiny probability of 2nd-worst case. (Approx. $2/N^3$)
- Randomness less important, so choosing (first, middle, last) works reasonably well
Partitioning the Array

- Once pivot is chosen, swap pivot to end of array. Start counters $i=1$ and $j=N-1$

- Intuition: i will look at less-than partition, j will look at greater-than partition

- Increment i and decrement j until we find elements that don't belong ($A[i] > \text{pivot}$ or $A[j] < \text{pivot}$)

- Swap ($A[i], A[j]$), continue increment/decrements

- When i and j touch, swap pivot with $A[j]$
QuickSort Worst Case

- Running time recurrence includes the cost of partitioning, then the cost of 2 quicksorts
- We don't know the size of the partitions, so let i be the size of the first partition
- $T(N) = T(i) + T(N-i-1) + N$
- Worst case is $T(N) = T(N-1) + N$
QuickSort Properties

- Unstable
- Average time $O(N \log N)$
- Worst case time $O(N^2)$
- Space $O(\log N)/O(N^2)$ because we need to store the pivots
Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst Case Time</th>
<th>Average Time</th>
<th>Space</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
<td>$O(1)$</td>
<td>No</td>
</tr>
<tr>
<td>Insertion</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
<td>$O(1)$</td>
<td>Yes</td>
</tr>
<tr>
<td>Shell</td>
<td>$O(N^{3/2})$</td>
<td>?</td>
<td>$O(1)$</td>
<td>No</td>
</tr>
<tr>
<td>Heap</td>
<td>$O(N \log N)$</td>
<td>$O(N \log N)$</td>
<td>$O(1)$</td>
<td>No</td>
</tr>
<tr>
<td>Merge</td>
<td>$O(N \log N)$</td>
<td>$O(N \log N)$</td>
<td>$O(N)/O(1)$</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Quick</td>
<td>$O(N^2)$</td>
<td>$O(N \log N)$</td>
<td>$O(\log N)$</td>
<td>No</td>
</tr>
</tbody>
</table>
Selection

- Recall selection problem: best solution so far was Heapselect
- Running time: $O(N+k \log N)$
- We should expect a faster algorithm since selection should be easier than sorting
- Quick Select: choose a pivot, partition array, recurse on the partition that contains k’th element
Quickselect Worst Case

- Quickselect only recurses one of the subproblems
- However, in the worst case, pivot only eliminates one element:
 \[T(N) = T(N-1) + N \]
- Same as Quicksort worst case
External Sorting

- So far, we have looked at sorting algorithms when the data is all available in RAM.

- Often, the data we want to sort is so large, we can only fit a subset in RAM at any time.

- We could run standard sorting algorithms, but then we would be swapping elements to and from disk.

- Instead, we want to minimize disk I/O, even if it means more CPU work.
MergeSort

- We can speed up external sorting if we have two or more disks (with free space) via Mergesort.

- One nice feature of Mergesort is the merging step can be done online with streaming data.

- Read as much data as you can, sort, write to disk, repeat for all data, write output to alternating disks.

- Merge outputs using 4 disks.
Simplified Running Time Analysis

- Suppose random disk i/o cost 10,000 ns
- Sequential disk i/o cost 100 ns
- RAM swaps/comparisons cost 10 ns
- Naive sorting: $10000 \times N \log N$
- Assume M elements fit in RAM.
 External mergesort:
 $10 \times N \log M + 100 \times N$ (# of sweeps through data)
Counting Merges

- After initial sorting, \(\frac{N}{M} \) sorted subsets distributed between 2 disks
- After each run, each pair is merged into a sorted subset twice as large.
- Full data set is sorted after \(\log(\frac{N}{M}) \) runs
- External sorting:
 \[10N \log M + 100N \log (N/M) \]