Data Structures and
Algorithms

Session 27. May 4th, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137

Annoucements and
Joday’s Plan

% Final Exam Wednesday May 13, 1:10 PM - 4 PM
Mudd 633

% Course evaluation

* Review 2" half of semester

* Lots of slides, I'll go fast but ask questions if you
have them

Final Topics Overview

* Hash Tables: Separate Chaining,

Big-Oh definitions (Omega, Theta) Probing

Arraylists/Linked Lists
yi ! ! * Graphs: Topological Sort, Shortest

Path, Max-Flow, Min Spanning

Stacks/Queues Tree, Euler

Binary Search Trees: AVL, Splay % Complexity Classes

Tries * Disjoint Sets

Heaps % Sorting: Insertion Sort, Shell Sort,

_ Merge Sort, Quick Sort, Radix
Huffman Coding Trees Sort. Quick Select

Big Oh Definitions

* For N greater than some constant, we have the
following definitions:

T(N) = O(f(N)) < T(N) < cf(N)

T(N) = Qg(N))—T(N)=cf(N)

T(N) = O(h(N)),

TN = O = 1(v) = o(n(v))

* There exists some constant ¢ such that cf(N)
bounds T(N)

Big Oh Definitions

* Alternately, O(f(N)) can be thought of as meaning

T(N) = O(f(N)) = Jlim_f(N) > lm T(N)

* Big-Oh notation is also referred to as asymptotic
analysis, for this reason.

Huffman’s Algorithm

* Compute character frequencies
* Create forest of 1-node trees for all the characters.

* Let the weight of the trees be the sum of the
frequencies of its leaves

* Repeat until forest is a single tree:
Merge the two trees with minimum weight.
Merging sums the weights.

Huffman Detalls

* We can manage the forest with a priority queue:
* buildHeap first,
* find the least weight trees with 2 deleteMins,
% after merging, insert back to heap.

* In practice, also have to store coding tree, but the
payoff comes when we compress larger strings

Hash Table ADT

* Insert or delete objects by key
* Search for objects by key

% No order information whatsoever

* ldeally O(1) per operation

Hash Functions

* A hash function maps any key to a valid array

position

* Array positions range from 0 to N-1

* Key range possibly unlimited

K-3

K-2

K-1

N-1

Hash Functions

* For integer keys, (key mod N) is the simplest hash
function

* In general, any function that maps from the space
of keys to the space of array indices is valid

* but a good hash function spreads the data out
evenly in the array;

* A good hash function avoids collisions

Collisions

* A collision is when two distinct keys map to the
same array index

* e.g., h(x) =xmod 5
h(7) =2, h(12) =2

* Choose h(x) to minimize collisions, but collisions
are inevitable

* To implement a hash table, we must decide on
collision resolution policy

Collision Resolution

* Two basic strategies
* Strategy 1: Separate Chaining

% Strategy 2: Probing; lots of variants

Strategy 1:
Separate Chaining

* Keep a list at each array entry
* Insert(x): find h(x), add to list at h(x)
* Delete(x): find h(x), search list at h(x) for x, delete
* Search(x): find h(x), search list at h(x)

* We could use a BST or other ADT, but if h(x) is a
good hash function, it won’t be worth the
overhead

Strategy 2: Probing

* If h(x) is occupied, try h(x)+f(i) mod N
for i = 1 until an empty slot is found

* Many ways to choose a good f(i)
* Simplest method: Linear Probing

% f(i) = |

Primary Clustering

* If there are many collisions, blocks of occupied
cells form: primary clustering

* Any hash value inside the cluster adds to the end
of that cluster

* (a) it becomes more likely that the next hash value
will collide with the cluster, and (b) collisions in the
cluster get more expensive

Quadratic Probing

* (i) = 1N2
* Avoids primary clustering

* Sometimes will never find an empty slot even if
table isn’t full!

1
% Luckily, if load factor A < 5 guaranteed to find

empty slot

Double Hashing

¥ If hi(x) is occupied, probe according to

f(2) =i X ho(x)

% 2"d hash function must never map to 0O

* Increments differently depending on the key

Rehashing

* Like ArrayLists, we have to guess the number of
elements we need to insert into a hash table

* Whatever our collision policy is, the hash table
becomes inefficient when load factor is too high.

* To alleviate load, rehash:

* create larger table, scan current table, insert
items into new table using new hash function

Graph Terminology

* A graph is a set of nodes and edges
* nodes aka vertices
* edges aka arcs, links

* Edges exist between pairs of nodes

* iIf nodes x and y share an edge, they are
adjacent

Graph Terminology

* Edges may have weights associated with them
* Edges may be directed or undirected
* A path is a series of adjacent vertices

* the length of a path is the sum of the edge
weights along the path (1 if unweighted)

* A cycle is a path that starts and ends on a node

Graph Properties

* An undirected graph with no cycles is a tree

* A directed graph with no cycles is a special class
called a directed acyclic graph (DAG)

* In a connected graph, a path exists between
every pair of vertices

* A complete graph has an edge between every
pair of vertices

Implementation

* Option 1:

* Store all nodes in an indexed list

* Represent edges with adjacency matrix
* Option 2:

* Explicitly store adjacency lists

Topological Sort

¥ Problem definition:

% Given a directed acyclic graph G, order the
nodes such that for each edge (v;,v,) € E, v;
Is before v; In the ordering.

* e.g., scheduling errands when some tasks depend
on other tasks being completed.

Topological Sort
Better Algorithm

* 1. Compute all indegrees

* 2. Put all indegree 0 nodes into a Collection
* 3. Print and remove a node from Collection
* 4. Decrement indegrees of the node’s neighbors.

* 5. If any neighbor has indegree 0, place in
Collection. Go to 3.

Topological Sort
Running time
¥ Initial indegree computation: O(|E|)

* Unless we update indegree as we build graph

* |V| nodes must be enqueued/dequeued

* Dequeue requires operation for outgoing edges
* Each edge is used, but never repeated

% Total running time O(|V| + |E|)

Shortest Path

* Given G = (V,E), and a node sV, find the shortest
(weighted) path from s to every other vertex in G.

* Motivating example: subway travel
* Nodes are junctions, transfer locations

* Edge weights are estimated time of travel

Breadth First Search

* Like a level-order traversal

* Find all adjacent nodes (level 1)

* Find new nodes adjacent to level 1 nodes (level 2)
* ...and so on

* We can implement this with a queue

Unweighted Shortest
Path Algorithm

* Set node s’ distance to 0 and enqueue s.
* Then repeat the following:
* Dequeue node v. For unset neighbor u:
* set neighbor u’s distance to v’s distance +1
* mark that we reached v from u

% enqueue u

Weighted Shortest Path

* The problem becomes more difficult when edges
have different weights

* Weights represent different costs on using that
edge

* Standard algorithm is Dijkstra’s Algorithm

Dijkstra’s Algorithm

* Keep distance overestimates D(v) for each node v
(all non-source nodes are initially infinite)

¥ 1. Choose node v with smallest unknown distance
¥ 2. Declare that v’s shortest distance is known

* 3. Update distance estimates for neighbors

Updating Distances

* For each of v’s neighbors, w,
* iIf min(D(v)+ weight(v,w), D(w))

¥ i.e., update D(w) if the path going through v is
cheaper than the best path so far to w

Proof by Contradiction
(Sketch)

* Contradiction: Dijkstra’s finds a shortest path to node w
through v, but there exists an even shorter path

* This shorter path must pass from
Inside our known set to outside.

% Call the 1t node in cheaper path
outside our set u

* The path to u must be shorter than the path to w

% But then we would have chosen u instead

Computational Cost

* Keep a priority queue of all unknown nodes

* Each stage requires a deleteMin, and then some
decreaseKeys (the # of neighbors of node)

* We call decreaseKey once per edge, we call
deleteMin once per vertex

% Both operations are O(log |V|)
% Total cost: O(|E| log |V| + |V| log |V|) = O(|E| log |V|)

All Pairs Shortest Path

* Dijkstra’s Algorithm finds shortest paths from one
node to all other nodes

* What about computing shortest paths for all pairs
of nodes?

* We can run Dijkstra’s |V| times. Total cost: O(|V|?)

* Floyd-Warshall algorithm is often faster in practice
(though same asymptotic time)

Recursive Motivation

* Consider the set of numbered nodes 1 through k

* The shortest path between any node i and j using
only nodes in the set {1, ..., k} is the minimum of

* shortest path from i to j using nodes {1, ..., k-1}
* shortest path from i to j using node k

* path(i,j,k) = min(path(i,j,k-1),
path(i,k,k-1)+ path(k,j,k-1))

Dynamic Programming

* Instead of repeatedly computing recursive calls,
store lookup table

* To compute path(i,j,k) for any i,j, we only need to
look up path(-,-, k-1)

* but never k-2, k-3, etc.

* We can incrementally compute the path matrix for
k=0, then use it to compute for k=1, then k=2...

Floyd-Warshall Code

* Initialize d = weight matrix

¥ for (k=0; k<N; k++)
for (i=0; i<N; i++)
for (3j=0; J<N; J++)
if (d[11[J] > d[1i][k]l+d[k][J])
d[(i]1[J] = d[1]1[k] + dA[k]I[J];

* Additionally, we can store the actual path by
keeping a “midpoint” matrix

Transitive Closure

* For any nodes |, j, is there a path from i to j?

* Instead of computing shortest paths, just compute
Boolean if a path exists

% path(i,j,k) = path(i,j,k-1) OR
path(i,k,k-1) AND path(k,j,k-1)

Maximum Flow

* Consider a graph representing flow capacity
* Directed graph with source and sink nodes
* Physical analogy: water pipes

* Each edge weight represents the capacity: how
much “water” can run through the pipe from
source to sink?

Max Flow Algorithm

* Create 2 copies of original graph: flow graph and
residual graph

* The flow graph tells us how much flow we have
currently on each edge

* The residual graph tells us how much flow is
available on each edge

* Initially, the residual graph is the original graph

Augmenting Path

* Find any path in residual graph from source to sink
* called an augmenting path.

* The minimum weight along path can be added as
flow to the flow graph

¥ But we don’t want to commit to this flow; add a
reverse-direction undo edge to the residual graph

Running limes

* If integer weights, each augmenting path
iIncreases flow by at least 1

% Costs O(|E|) to find an augmenting path

* For max flow f, finding max flow (Floyd-
Fulkerson) costs O(f|E|)

* Choosing shortest unweighted path (Edmonds-
Karp), O(|V||E|?)

Minimum Spanning Tree
Problem definition

* Given connected graph G, find the connected,
acyclic subgraph T with minimum edge weight

* A tree that includes every node is called a
spanning tree

* The method to find the MST is another example of
a greedy algorithm

Motivation for Greed

* Consider any spanning tree iif\@

* Adding another edge to the tree
creates exactly one cycle

* Removing an edge from that
cycle restores the tree structure

gt
gt

Prim’s Algorithm

* Grow the tree like Dijkstra’s Algorithm

* Dijkstra’s: grow the set of vertices to which we
know the shortest path

* Prim’s: grow the set of vertices we have added to
the minimum tree

* Store shortest edge D[] from each node to tree

Prim’s Algorithm

* Start with a single node tree, set distance of
adjacent nodes to edge weights, infinite elsewhere

* Repeat until all nodes are in tree:
* Add the node v with shortest known distance

* Update distances of adjacent nodes w:
D[w] = min(D[w], weight(v,w))

Prim’s Algorithm
Justification

* At any point, we can consider the set of nodes in
the tree T and the set outside the tree Q

% Whatever the MST structure of the nodes in Q, at
least one edge must connect the MSTs of T and Q

* The greedy edge is just as good structurally as any
other edge, and has minimum weight

Prim’'s Running ime

% Each stage requires one deleteMin O(log |V|), and
there are exactly |V| stages

* We update keys for each edge, updating the key
costs O(log |V|) (either an insert or a decreaseKey)

% Total time: O(|V| log |V| + |E| log |V|) = O(|E| log |V|)

Kruskal's Algorithm

* Somewhat simpler conceptually, but more
challenging to implement

* Algorithm: repeatedly add the shortest edge that
does not cause a cycle until no such edges exist

* Each added edge performs a union on two trees;
perform unions until there is only one tree

* Need special ADT for unions
(Disjoint Set... we’ll cover it later)

Kruskal’s Justification

* At each stage, the greedy edge e connects two
nodes v and w

* Eventually those two nodes must be connected,;

* we must add an edge to connect trees including
vand w

* We can always use e to connect v and w, which
must have less weight since it's the greedy choice

Kruskal's Running Iime

¥ First, buildHeap costs O(|E|)
% In the worst case, we have to call |E

* Total running time O(|E| log |E|); but

deleteMins

E| <| V]

O(|E|log [V[*) = O(2|E|log |V|) = O(|E|log | V)

The Seven Bridges of
Komgsberg

e Al S5 D P Jeb VI o8

* Konigsburg Brldge Problem can one walk across
the seven bridges and never cross the same
bridge twice?

* Euler solved the problem by inventing graph
theory

Fuler Paths and Circuits

* Euler path — a (possibly cyclic) path that crosses
each edge exactly once

* Euler circuit - an Euler path that starts and ends on
the same node

Euler’'s Proof

* Does an Euler path exist? No

* Nodes with an odd degree must either be the start
or end of the path

* Only one node in the Kbnigsberg graph has odd
degree; the path cannot exist

¥ What about an Euler circuit?

Finding an Euler Circuit

* Run a partial DFS; search down a path until you
need to backtrack (mark edges instead of nodes)

* At this point, you will have found a circuit

* Find first node along the circuit that has unvisited
edges; run a DFS starting with that edge

* Splice the new circuit into the main circuit, repeat
until all edges are visited

Euler Circuit Running
Time

* All our DFS's will visit each edge once, so at least
O(|E|)

* Must use a linked list for efficient splicing of path,
so searching for a vertex with unused edge can be
expensive

* but cleverly saving the last scanned edge in each
adjacency list can prevent having to check edges
more than once, so also O(|E|)

Complexity Classes

* P - solvable in polynomial time

* NP - solvable in polynomial time by a
nondeterministic computer

* I.e., you can check a solution in polynomial time

* NP-complete - a problem in NP such that any
problem in NP is polynomially reducible to it

* Undecidable - no algorithm can solve the problem

Probable Complexity
Class Hierarchy

NP

NP-Complete

NP-Hard

Undecidable

Polynomial Time P

* All the algorithms we cover in class are solvable in
polynomial time

* An algorithm that runs in polynomial time is
considered efficient

* A problem solvable in polynomial time is
considered tractable

Nondeterministic
Polynomial Time NP

* Consider a magical nondeterministic computer
* infinitely parallel computer

* Equivalently, to solve any problem, check every
possible solution in parallel

* return one that passes the check

NP-Complete

* Special class of NP problems that can be used to
solve any other NP problem

* Hamiltonian Path, Satisfiability, Graph Coloring
etc.

* NP-Complete problems can be reduced to other
NP-Complete problems:

* polynomial time algorithm to convert the input
and output of algorithms

NP-Hard

* A problem is NP-Hard if it is at least as complex as
all NP-Complete problems

* NP-hard problems may not even be NP

NP-Complete Problems
Satisfiability

* Given Boolean expression of N variables, can we
set variables to make expression true?

* First NP-Complete proof because Cook’s Theorem
gave polynomial time procedure to convert any NP
problem to a Boolean expression

* l.e., if we have efficient algorithm for Satisfiability,
we can efficiently solve any NP problem

NP-Complete Problems
Graph Coloring

* Given a graph is it possible to color with k colors
all nodes so no adjacent nodes are the same
color?

* Coloring countries on a map

* Sudoku is a form of this problem. All squares in a
row, column and blocks are connected. k =9

NP-Complete Problems
Hamiltonian Path

* Given a graph with N nodes, is there a path that
visits each node exactly once?

NP-Hard Problems
Traveling Salesman

* Closely related to Hamiltonian Path problem

* Given complete graph G, find a path that visits all
nodes that costs less than some constant k

* If we are able to solve TSP, we can find a
Hamiltonian Path; set connected edge weight to
constant, disconnected to infinity

* TSP is NP-hard

Equivalence Relations

* An equivalence relation is a relation operator that
observes three properties:

* Reflexive: (a R a), for all a
¥ Symmetric: (@R b) ifandonly if (b R a)
* Transitive: (a R b) and (b R ¢) implies (a R ¢)

* Put another way, equivalence relations check if
operands are in the same equivalence class

Equivalence Classes

* Equivalence class: the set of elements that are all
related to each other via an equivalence relation

* Due to transitivity, each member can only be a
member of one equivalence class

* Thus, equivalence classes are disjoint sets

% Choose any distinct sets Sand T, SNT = ()

Disjoint Set ADT

* Collection of objects, each in an equivalence class
* find(x) returns the class of the object
* union(x,y) puts x and y in the same class

% as well as every other relative of x and y

* Even less information than hash; no keys, no
ordering

Data Structure

* Store elements in equivalence (general) trees
* Use the tree’s root as equivalence class label
* find returns root of containing tree

* union merges tree

* Since all operations only search up the tree, we
can store in an array

Implementation

* Index all objects from 0 to N-1

* Store a parent array such that s[i] is the index of
I's parent

* If i is a root, store the negative size of its tree”
* find follows s[i] until negative, returns index

* union(x,y) points the root of x’s tree to the root of
y’s tree

Analysis

* find costs the depth of the node
* union costs O(1) after finding the roots
* Both operations depend on the height of the tree

* Since these are general trees, the trees can be
arbitrarily shallow

Union by Size

* Claim: if we union by pointing the smaller tree to
the larger tree’s root, the height is at most log N

* Each union increases the depths of nodes in the
smaller trees

* Also puts nodes from the smaller tree into a tree at
least twice the size

* We can only double the size log N times

Union by Size Figure

000 (2

Union by Height

* Similar method, attach the tree with less height to
the taller tree

* Shorter tree’s nodes join a tree at least twice the
height, overall height only increases if trees are
equal height

Union by Height Figure

Path Compression

* Even if we have log N tall trees, we can keep
calling find on the deepest node repeatedly,
costing O(M log N) for M operations

* Additionally, we will perform path compression
during each find call

* Point every node along the find path to root

Path Compression
Flgure

" 6L

Union by Rank

* Path compression messes up union-by-height
because we reduce the height when we compress

* We could fix the height, but this turns out to gain
little, and costs find operations more

* Instead, rename to union by rank, where rank is
just an overestimate of height

* Since heights change less often than sizes,
rank/height is usually the cheaper choice

Worst Case Bound

* A slightly looser, but easier to prove/understand
bound is that any sequence of M = Q(N)
operations will cost O(M log* N) running time

* log”™ N is the number of times the logarithm needs
to be applied to N until the result is <1

* Proof idea: upper bound the number of nodes per
rank, partition ranks into groups

Sorting

* Given array A of size N, reorder A so its elements
are in order.

* "In order" with respect to a consistent
comparison function

The Bad News

* Sorting algorithms typically compare two elements
and branch according to the result of comparison

* Theorem: An algorithm that branches from the
result of pairwise comparisons must use Q(N log N)
operations to sort worst-case input

% Proof via decision tree

Counting Sort

* Another simple sort for integer inputs
* 1. Treat integers as array indices (subtract min)
* 2. Insert items into array indices

* 3. Read array in order, skipping empty entries

Bucket Sort

* Like Counting Sort, but less wasteful in space
* Split the input space into k buckets
* Put input items into appropriate buckets

* Sort the buckets using favorite sorting algorithm

Radix Sort

* Trie method and CountingSort are forms of Radix
Sort

* Radix Sort sorts by looking at one digit at a time

* We can start with the least significant digit or the
most significant digit

* least significant digit first provides a stable sort

* trie's use most significant, so let's look at least...

Radix Sort with Least
Significant Digit

* CountingSort according to the least significant
digit

* Repeat: CountingSort according to the next least
significant digit

* Each step must be stable
* Running time: O(NK) for maximum of k digits

* Space: O(N+b) for base-b number system”

Comparison Sort
Characteristics

* Worst case running time

* Worst case space usage (can it run in place?)
* Stability

* Average running time/space

* (simplicity)

INnsertion Sort

* Assume first p elements are sorted. Insert (p+1)'th
element into appropriate location.

* Save A[p+1] in temporary variable t, shift sorted
elements greater than t, and insert t

* Stable
% Running time O(N?)

* In place O(1) space

Insertion Sort Analysis

* When the sorted segment is i elements, we may

need up to i shifts to insert the next element
N

Y i=N(N-1)/2-1=0(N?)

1=2

* Stable because elements are visited in order and
equal elements are inserted after its equals

* Algorithm Animation

Shellsort

* Essentially splits the array into subarrays and runs
Insertion Sort on the subarrays

* Uses an increasing sequence, hq,..., hs such
that hy = 1.

% At phase k, all elements h apart are sorted; the
array is called hg-sorted

¥ for every i, Al1] < Al + hi]

Shell Sort Correctness

* Efficiency of algorithm depends on that elements
sorted at earlier stages remain sorted in later
stages

* Unstable. Example: 2-sort the following: [5 5 1]

Increment Sequences

% Shell suggested the sequence h: = [IV/2]
and hp = |hxa1/2], which was suboptimal

* A better sequence is hr = 2" — 1
% Shellsort using better sequence is proven ©(N?*/?)

* Often used for its simplicity and sub-quadratic
time, even though O(N log N) algorithms exist

% Animation

Heapsort

* Build a max heap from the array: O(N)
* call deleteMax N times: O(N log N)

* O(1) space

* Simple if we abstract heaps

* Unstable

¥ Animation

Mergesort

* Quintessential divide-and-conquer example
* Mergesort each half of the array, merge the results

* Merge by iterating through both halves, compare
the current elements, copy lesser of the two into
output array

% Animation

Mergesort Recurrence

* Merge operation is costs O(N)
*¥T(N)=2T(N/2) + N

¥ We solved this recurrence for the recursive
solutions to the homework 1 theory problem

, N
= iz:; 205
log N

Quicksort

* Choose an element as the pivot

* Partition the array into elements greater than pivot
and elements less than pivot

% Quicksort each partition

Choosing a Pivot

* The worst case for Quicksort is when the partitions
are of size zero and N-1

* |ldeally, the pivot is the median, so each partition is
about half

* If your input is random, you can choose the first
element, but this is very bad for presorted input!

* Choosing randomly works, but a better method is...

Median-of- T hree

* Choose three entries, use the median as pivot

* If we choose randomly, 2/N probability of worst
case pivots

* Median-of-three gives 0 probability of worst case,
tiny probability of 2nd-worst case. (Approx. 2/N*?)

* Randomness less important, so choosing
(first, middle, last) works reasonably well

Partitioning the Array

w

* Once pivot is chosen, swap pivot to end of array.
Start counters i=1 and j=N-1

* Intuition: 1 will look at less-than partition, j will look
at greater-than partition

* Increment i and decrement j until we find elements
that don't belong (A[i] > pivot or A[j] < pivot

"

* Swap (A[i], A[j]), continue increment/decrements

* When i and j touch, swap pivot with A[j]

Quicksort Worst Case

* Running time recurrence includes the cost of
partitioning, then the cost of 2 quicksorts

* We don't know the size of the partitions, so let i be
the size of the first partition

* T(N) = T(1))+T(N-i-1) + N
* Worst case is T(N) = T(N-1) + N

Quicksort Properties

* Unstable
* Average time O(N log N)
* Worst case time O(N?)

* Space O(log N)/O(N?) because we need to store
the pivots

Summary

Worst Case

Average

Time Time Space Stable?
Selection O(N?) O(N?) O(1) No
Insertion O(N?) O(N?) O(1) Yes
Shell O(N3/?) ? O(1) No
Heap |O(NlogN)|O(NlogN) O(1) No
Merge |O(NlogN)|O(NlogN)|O(N)/O(1)| Yes/No
Quick O(N?) |O(NlogN)| O(logN) No

Selection

* Recall selection problem: best solution so far was
Heapselect

* Running time: O(N+k log N)

* We should expect a faster algorithm since
selection should be easier than sorting

* Quick Select: choose a pivot, partition array,
recurse on the partition that contains k’th element

Quickselect Worst Case

* Quickselect only recurses one one of the
subproblems

* However, in the worst case, pivot only eliminates
one element:

% T(N) = T(N-1) + N

¥ Same as Quicksort worst case

External Sorting

* So far, we have looked at sorting algorithms when
the data is all available in RAM

* Often, the data we want to sort is so large, we can
only fit a subset in RAM at any time

* We could run standard sorting algorithms, but then
we would be swapping elements to and from disk

* Instead, we want to minimize disk I/O, even if it
means more CPU work

MergeSort

* We can speed up external sorting if we have two
or more disks (with free space) via Mergesort

* One nice feature of Mergesort is the merging step
can be done online with streaming data

* Read as much data as you can, sort, write to disk,
repeat for all data, write output to alternating disks

* merge outputs using 4 disks

Simplified Running Time
Analysis

* Suppose random disk i/o cost 10,000 ns
* Sequential disk i/o cost 100 ns
* RAM swaps/comparisons cost 10 ns
* Nalive sorting: 10000 N log N

* Assume M elements fit in RAM.
External mergesort:
10 N log M + 100 N (# of sweeps through data)

Counting Merges

* After initial sorting, N/M sorted subsets distributed
between 2 disks

* After each run, each pair is merged into a sorted
subset twice as large.

* Full data set is sorted after log(N/M) runs

* External sorting:
10 N log M + 100 N log (N/M)

