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Annoucements and 
Today’s Plan
Final Exam Wednesday May 13th, 1:10 PM - 4 PM
Mudd 633 

Course evaluation

Review 2nd half of semester

Lots of slides, I’ll go fast but ask questions if you 
have them



Final Topics Overview

Big-Oh definitions (Omega, Theta)

Arraylists/Linked Lists

Stacks/Queues

Binary Search Trees: AVL, Splay

Tries

Heaps

Huffman Coding Trees

Hash Tables: Separate Chaining, 
Probing

Graphs: Topological Sort, Shortest 
Path, Max-Flow, Min Spanning 
Tree, Euler

Complexity Classes

Disjoint Sets

Sorting: Insertion Sort, Shell Sort, 
Merge Sort, Quick Sort, Radix 
Sort, Quick Select



Big Oh Definitions

T (N) = O(f(N))← T (N) ≤ cf(N)

T (N) = Ω(g(N))← T (N) ≥ cf(N)

T (N) = Θ(h(N))← T (N) = O(h(N)),
T (N) = Ω(h(N))

For N greater than some constant, we have the 
following definitions:

There exists some constant c such that cf(N) 
bounds T(N)



Big Oh Definitions

Alternately, O(f(N)) can be thought of as meaning

Big-Oh notation is also referred to as asymptotic 
analysis, for this reason.

T (N) = O(f(N))← lim
N→∞

f(N) ≥ lim
N→∞

T (N)



Huffman’s Algorithm

Compute character frequencies

Create forest of 1-node trees for all the characters. 

Let the weight of the trees be the sum of the 
frequencies of its leaves

Repeat until forest is a single tree: 
Merge the two trees with minimum weight. 
Merging sums the weights.



Huffman Details

We can manage the forest with a priority queue:

buildHeap first, 

find the least weight trees with 2 deleteMins,

after merging, insert back to heap.

In practice, also have to store coding tree, but the 
payoff comes when we compress larger strings 



Hash Table ADT

Insert or delete objects by key

Search for objects by key

No order information whatsoever

Ideally O(1) per operation



Hash Functions

A hash function maps any key to a valid array 
position

Array positions range from 0 to N-1

Key range possibly unlimited

1 2 3 4 5 6 ... K-3 K-2 K-1 K

0 1 ... N-2 N-1



Hash Functions

For integer keys, (key mod N) is the simplest hash 
function

In general, any function that maps from the space 
of keys to the space of array indices is valid

but a good hash function spreads the data out 
evenly in the array;

A good hash function avoids collisions



Collisions
A collision is when two distinct keys map to the 
same array index

e.g., h(x) = x mod 5
        h(7) = 2,  h(12) = 2

Choose h(x) to minimize collisions, but collisions 
are inevitable

To implement a hash table, we must decide on 
collision resolution policy



Collision Resolution

Two basic strategies

Strategy 1: Separate Chaining

Strategy 2: Probing; lots of variants



Strategy 1: 
Separate Chaining
Keep a list at each array entry

Insert(x): find h(x), add to list at h(x)

Delete(x): find h(x), search list at h(x) for x, delete

Search(x): find h(x), search list at h(x)

We could use a BST or other ADT, but if h(x) is a 
good hash function, it won’t be worth the 
overhead



Strategy 2: Probing

If h(x) is occupied, try  h(x)+f(i) mod N 
for i = 1 until an empty slot is found

Many ways to choose a good f(i)

Simplest method: Linear Probing

f(i) = i



Primary Clustering

If there are many collisions, blocks of occupied 
cells form: primary clustering

Any hash value inside the cluster adds to the end 
of that cluster

(a) it becomes more likely that the next hash value 
will collide with the cluster, and (b) collisions in the 
cluster get more expensive



Quadratic Probing

f(i) = i^2

Avoids primary clustering

Sometimes will never find an empty slot even if 
table isn’t full!

Luckily, if load factor             ,  guaranteed to find 
empty slot

λ ≤ 1
2



Double Hashing

If            is occupied, probe according to 

2nd hash function must  never map to 0

Increments differently depending on the key

f(i) = i× h2(x)
h1(x)



Rehashing

Like ArrayLists, we have to guess the number of 
elements we need to insert into a hash table

Whatever our collision policy is, the hash table 
becomes inefficient when load factor is too high.

To alleviate load, rehash:

create larger table, scan current table, insert 
items into new table using new hash function



Graph Terminology

A graph is a set of nodes and edges

nodes aka vertices

edges aka arcs, links

Edges exist between pairs of nodes

if nodes x and y share an edge, they are 
adjacent 



Graph Terminology

Edges may have weights associated with them

Edges may be directed or undirected

A path is a series of adjacent vertices

the length of a path is the sum of the edge 
weights along the path (1 if unweighted)

A cycle is a path that starts and ends on a node



Graph Properties

An undirected graph with no cycles is a tree

A directed graph with no cycles is a special class 
called a directed acyclic graph (DAG)

In a connected graph, a path exists between 
every pair of vertices 

A complete graph has an edge between every 
pair of vertices



Implementation

Option 1:

Store all nodes in an indexed list

Represent edges with adjacency matrix

Option 2:

Explicitly store adjacency lists



Topological Sort

Problem definition:

Given a directed acyclic graph G, order the 
nodes such that for each edge                   ,       
is before       in the ordering.

e.g., scheduling errands when some tasks depend 
on other tasks being completed.

(vi, vj) ∈ E vi

vj



Topological Sort
Better Algorithm
1. Compute all indegrees

2. Put all indegree 0 nodes into a Collection

3. Print and remove a node from Collection

4. Decrement indegrees of the node’s neighbors.

5. If any neighbor has indegree 0, place in 
Collection. Go to 3. 



Topological Sort 
Running time
Initial indegree computation: O(|E|)

Unless we update indegree as we build graph

|V| nodes must be enqueued/dequeued

Dequeue requires operation for outgoing edges

Each edge is used, but never repeated

Total running time O(|V| + |E|)



Shortest Path

Given G = (V,E), and a node s   V, find the shortest 
(weighted) path from s to every other vertex in G.

Motivating example: subway travel

Nodes are junctions, transfer locations

Edge weights are estimated time of travel

∈



Breadth First Search

Like a level-order traversal

Find all adjacent nodes (level 1)

Find new nodes adjacent to level 1 nodes (level 2)

... and so on

We can implement this with a queue



Unweighted Shortest 
Path Algorithm
Set node s’ distance to 0 and enqueue s. 

Then repeat the following:

Dequeue node v. For unset neighbor u:

set neighbor u’s distance to v’s distance +1

mark that we reached v from u

enqueue u



Weighted Shortest Path

The problem becomes more difficult when edges 
have different weights

Weights represent different costs on using that 
edge

Standard algorithm is Dijkstra’s Algorithm



Dijkstra’s Algorithm

Keep distance overestimates D(v) for each node v 
(all non-source nodes are initially infinite)

1. Choose node v with smallest unknown distance

2. Declare that v’s shortest distance is known

3. Update distance estimates for neighbors



Updating Distances

For each of v’s neighbors, w,

if min(D(v)+ weight(v,w),  D(w))

i.e., update D(w) if the path going through v is 
cheaper than the best path so far to w



Proof by Contradiction 
(Sketch)

Contradiction: Dijkstra’s finds a shortest path to node w 
through v, but there exists an even shorter path

This shorter path must pass from 
inside our known set to outside. 

Call the 1st node in cheaper path 
outside our set u

The path to u must be shorter than the path to w

But then we would have chosen u instead

s

u

v w

?

...

...



Computational Cost

Keep a priority queue of all unknown nodes

Each stage requires a deleteMin, and then some 
decreaseKeys (the # of neighbors of node)

We call decreaseKey once per edge, we call 
deleteMin once per vertex

Both operations are O(log |V|)

Total cost: O(|E| log |V| + |V| log |V|) = O(|E| log |V|)



All Pairs Shortest Path

Dijkstra’s Algorithm finds shortest paths from one 
node to all other nodes

What about computing shortest paths for all pairs 
of nodes?

We can run Dijkstra’s |V| times. Total cost: 

Floyd-Warshall algorithm is often faster in practice 
(though same asymptotic time)

O(|V |3)



Recursive Motivation

Consider the set of numbered nodes 1 through k

The shortest path between any node i and j using 
only nodes in the set {1, ..., k} is the minimum of

shortest path from i to j using nodes {1, ..., k-1}

shortest path from i to j using node k

path(i,j,k) = min( path(i,j,k-1), 
                          path(i,k,k-1)+ path(k,j,k-1) )



Dynamic Programming

Instead of repeatedly computing recursive calls, 
store lookup table

To compute path(i,j,k) for any i,j, we only need to 
look up path(-,-, k-1)

but never k-2, k-3, etc.

We can incrementally compute the path matrix for 
k=0, then use it to compute for k=1, then k=2...



Floyd-Warshall Code

Initialize d = weight matrix

for (k=0; k<N; k++) 
  for (i=0; i<N; i++) 
    for (j=0; j<N; j++) 
      if (d[i][j] > d[i][k]+d[k][j])
        d[i][j] = d[i][k] + d[k][j];

Additionally, we can store the actual path by 
keeping a “midpoint” matrix



Transitive Closure

For any nodes i, j, is there a path from i to j? 

Instead of computing shortest paths, just compute 
Boolean if a path exists

path(i,j,k) = path(i,j,k-1) OR 
                   path(i,k,k-1) AND path(k,j,k-1)



Maximum Flow

Consider a graph representing flow capacity

Directed graph with source and sink nodes

Physical analogy: water pipes 

Each edge weight represents the capacity: how 
much “water” can run through the pipe from 
source to sink?



Max Flow Algorithm

Create 2 copies of original graph: flow graph and 
residual graph

The flow graph tells us how much flow we have 
currently on each edge

The residual graph tells us how much flow is 
available on each edge

Initially, the residual graph is the original graph



Augmenting Path

Find any path in residual graph from source to sink

called an augmenting path.

The minimum weight along path can be added as 
flow to the flow graph

But we don’t want to commit to this flow; add a 
reverse-direction undo edge to the residual graph



Running Times

If integer weights, each augmenting path 
increases flow by at least 1

Costs O(|E|) to find an augmenting path

For max flow    , finding max flow (Floyd-
Fulkerson) costs 

Choosing shortest unweighted path (Edmonds-
Karp), 

f
O(f |E|)

O(|V ||E|2)



Minimum Spanning Tree
Problem definition

Given connected graph G, find the connected, 
acyclic subgraph T with minimum edge weight

A tree that includes every node is called a 
spanning tree

The method to find the MST is another example of 
a greedy algorithm



Motivation for Greed

Consider any spanning tree

Adding another edge to the tree 
creates exactly one cycle

Removing an edge from that 
cycle restores the tree structure



Prim’s Algorithm

Grow the tree like Dijkstra’s Algorithm

Dijkstra’s: grow the set of vertices to which we 
know the shortest path

Prim’s: grow the set of vertices we have added to 
the minimum tree

Store shortest edge D[ ] from each node to tree



Prim’s Algorithm

Start with a single node tree, set distance of 
adjacent nodes to edge weights, infinite elsewhere

Repeat until all nodes are in tree:

Add the node v with shortest known distance

Update distances of adjacent nodes w: 
D[w] = min( D[w], weight(v,w))



Prim’s Algorithm 
Justification

At any point, we can consider the set of nodes in 
the tree T and the set outside the tree Q 

Whatever the MST structure of the nodes in Q, at 
least one edge must connect the MSTs of T and Q

The greedy edge is just as good structurally as any 
other edge, and has minimum weight



Prim’s Running Time

Each stage requires one deleteMin O(log |V|), and 
there are exactly |V| stages

We update keys for each edge, updating the key 
costs O(log |V|) (either an insert or a decreaseKey)

Total time: O(|V| log |V| + |E| log |V|) = O(|E| log |V|)



Kruskal’s Algorithm
Somewhat simpler conceptually, but more 
challenging to implement

Algorithm: repeatedly add the shortest edge that 
does not cause a cycle until no such edges exist

Each added edge performs a union on two trees; 
perform unions until there is only one tree

Need special ADT for unions 
(Disjoint Set... we’ll cover it later)



Kruskal’s Justification

At each stage, the greedy edge e connects two 
nodes v and w

Eventually those two nodes must be connected;

we must add an edge to connect trees including 
v and w

We can always use e to connect v and w, which 
must have less weight since it's the greedy choice



Kruskal’s Running Time

First, buildHeap costs O(|E|)

In the worst case, we have to call |E| deleteMins 

Total running time O(|E| log |E|); but |E| ≤| V |2

O(|E| log |V |2) = O(2|E| log |V |) = O(|E| log |V |)



The Seven Bridges of 
Königsberg

Königsburg Bridge Problem: can one walk across 
the seven bridges and never cross the same 
bridge twice?

Euler solved the problem by inventing graph 
theory

http://math.dartmouth.edu/~euler/docs/originals/E053.pdf



Euler Paths and Circuits

Euler path – a (possibly cyclic) path that crosses 
each edge exactly once

Euler circuit - an Euler path that starts and ends on 
the same node



Euler’s Proof

Does an Euler path exist? No

Nodes with an odd degree must either be the start 
or end of the path

Only one node in the Königsberg graph has odd 
degree; the path cannot exist

What about an Euler circuit?



Finding an Euler Circuit

Run a partial DFS; search down a path until you 
need to backtrack (mark edges instead of nodes)

At this point, you will have found a circuit

Find first node along the circuit that has unvisited 
edges; run a DFS starting with that edge

Splice the new circuit into the main circuit, repeat 
until all edges are visited



Euler Circuit Running 
Time
All our DFS's will visit each edge once, so at least 
O(|E|)

Must use a linked list for efficient splicing of path, 
so searching for a vertex with unused edge can be 
expensive

but cleverly saving the last scanned edge in each 
adjacency list can prevent having to check edges 
more than once, so also O(|E|)



Complexity Classes

P - solvable in polynomial time

NP - solvable in polynomial time by a 
nondeterministic computer

i.e., you can check a solution in polynomial time

NP-complete - a problem in NP such that any 
problem in NP is polynomially reducible to it

Undecidable - no algorithm can solve the problem



Probable Complexity 
Class Hierarchy

P

NP

Undecidable

NP-Complete

NP-Hard



Polynomial Time P

All the algorithms we cover in class are solvable in 
polynomial time

An algorithm that runs in polynomial time is 
considered efficient

A problem solvable in polynomial time is 
considered tractable



Nondeterministic 
Polynomial Time NP

Consider a magical nondeterministic computer

infinitely parallel computer

Equivalently, to solve any problem, check every 
possible solution in parallel

return one that passes the check



NP-Complete
Special class of NP problems that can be used to 
solve any other NP problem

Hamiltonian Path, Satisfiability, Graph Coloring 
etc.

NP-Complete problems can be reduced to other 
NP-Complete problems:

polynomial time algorithm to convert the input 
and output of algorithms



NP-Hard

A problem is NP-Hard if it is at least as complex as 
all NP-Complete problems

NP-hard problems may not even be NP



NP-Complete Problems
Satisfiability
Given Boolean expression of N variables, can we 
set variables to make expression true?

First NP-Complete proof because Cook’s Theorem 
gave polynomial time procedure to convert any NP 
problem to a Boolean expression

I.e., if we have efficient algorithm for Satisfiability, 
we can efficiently solve any NP problem



NP-Complete Problems 
Graph Coloring

Given a graph is it possible to color with k colors 
all nodes so no adjacent nodes are the same 
color?

Coloring countries on a map

Sudoku is a form of this problem. All squares in a 
row, column and blocks are connected. k = 9



NP-Complete Problems
Hamiltonian Path

Given a graph with N nodes, is there a path that 
visits each node exactly once?



NP-Hard Problems 
Traveling Salesman
Closely related to Hamiltonian Path problem

Given complete graph G, find a path that visits all 
nodes that costs less than some constant k

If we are able to solve TSP, we can find a 
Hamiltonian Path; set connected edge weight to 
constant, disconnected to infinity

TSP is NP-hard



Equivalence Relations

An equivalence relation is a relation operator that 
observes three properties:

Reflexive: (a R a), for all a 

Symmetric: (a R b)  if and only if  (b R a)

Transitive: (a R b) and (b R c) implies (a R c)

Put another way, equivalence relations check if 
operands are in the same equivalence class



Equivalence Classes

Equivalence class: the set of elements that are all 
related to each other via an equivalence relation

Due to transitivity, each member can only be a 
member of one equivalence class

Thus, equivalence classes are disjoint sets

Choose any distinct sets S and T, S ∩ T = ∅



Disjoint Set ADT

Collection of objects, each in an equivalence class

find(x) returns the class of the object

union(x,y) puts x and y in the same class

as well as every other relative of x and y

Even less information than hash; no keys, no 
ordering



Data Structure

Store elements in equivalence (general) trees

Use the tree’s root as equivalence class label

find returns root of containing tree

union merges tree

Since all operations only search up the tree, we 
can store in an array



Implementation
Index all objects from 0 to N-1

Store a parent array such that s[i] is the index of 
i’s parent

If i is a root, store the negative size of its tree*

find follows s[i] until negative, returns index

union(x,y) points the root of x’s tree to the root of 
y’s tree



Analysis

find costs the depth of the node 

union costs O(1) after finding the roots

Both operations depend on the height of the tree

Since these are general trees, the trees can be 
arbitrarily shallow



Union by Size

Claim: if we union by pointing the smaller tree to 
the larger tree’s root, the height is at most log N

Each union increases the depths of nodes in the 
smaller trees

Also puts nodes from the smaller tree into a tree at 
least twice the size

We can only double the size log N times



Union by Size Figure

d

3

b

2

e

ca

d

3

b

eca



Union by Height

Similar method, attach the tree with less height to 
the taller tree

Shorter tree’s nodes join a tree at least twice the 
height, overall height only increases if trees are 
equal height



Union by Height Figure
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Path Compression

Even if we have log N tall trees, we can keep 
calling find on the deepest node repeatedly, 
costing O(M log N) for M operations

Additionally, we will perform path compression 
during each find call

Point every node along the find path to root



Path Compression 
Figure
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Union by Rank
Path compression messes up union-by-height 
because we reduce the height when we compress

We could fix the height, but this turns out to gain 
little, and costs find operations more

Instead, rename to union by rank, where rank is 
just an overestimate of height

Since heights change less often than sizes, 
rank/height is usually the cheaper choice



Worst Case Bound

A slightly looser, but easier to prove/understand 
bound is that any sequence of 
operations will cost O(M log* N) running time

log* N is the number of times the logarithm needs 
to be applied to N until the result is 

Proof idea: upper bound the number of nodes per 
rank, partition ranks into groups

M = Ω(N)

≤ 1



Sorting

Given array A of size N, reorder A so its elements 
are in order.

"In order" with respect to a consistent 
comparison function



The Bad News

Sorting algorithms typically compare two elements 
and branch according to the result of comparison

Theorem: An algorithm that branches from the 
result of pairwise comparisons must use  
operations to sort worst-case input

Proof via decision tree

Ω(N log N)



Counting Sort

Another simple sort for integer inputs

1. Treat integers as array indices (subtract min)

2. Insert items into array indices

3. Read array in order, skipping empty entries



Bucket Sort

Like Counting Sort, but less wasteful in space

Split the input space into k buckets

Put input items into appropriate buckets

Sort the buckets using favorite sorting algorithm



Radix Sort

Trie method and CountingSort are forms of Radix 
Sort

Radix Sort sorts by looking at one digit at a time

We can start with the least significant digit or the 
most significant digit

least significant digit first provides a stable sort

trie's use most significant, so let's look at least...



Radix Sort with Least 
Significant Digit
CountingSort according to the least significant 
digit

Repeat: CountingSort according to the next least 
significant digit

Each step must be stable

Running time: O(Nk) for maximum of k digits

Space: O(N+b) for base-b number system*



Comparison Sort 
Characteristics

Worst case running time

Worst case space usage (can it run in place?)

Stability

Average running time/space

(simplicity)



Insertion Sort

Assume first p elements are sorted. Insert (p+1)'th 
element into appropriate location.

Save A[p+1] in temporary variable t, shift sorted 
elements greater than t, and insert t

Stable

Running time

In place O(1) space

O(N2)



Insertion Sort Analysis

When the sorted segment is i elements, we may 
need up to i shifts to insert the next element

Stable because elements are visited in order and 
equal elements are inserted after its equals

Algorithm Animation

N∑

i=2

i = N(N − 1)/2− 1 = O(N2)



Shellsort

Essentially splits the array into subarrays and runs 
Insertion Sort on the subarrays

Uses an increasing sequence,                 , such 
that            . 

At phase k, all elements       apart are sorted; the 
array is called      -sorted

for every i, 

h1, . . . , ht

h1 = 1

A[i] ≤ A[i + hk]

hk

hk



Shell Sort Correctness

Efficiency of algorithm depends on that elements 
sorted at earlier stages remain sorted in later 
stages

Unstable. Example: 2-sort the following: [5 5 1]



Increment Sequences

Shell suggested the sequence 
and                         , which was suboptimal

A better sequence is 

Shellsort using better sequence is proven 

Often used for its simplicity and sub-quadratic 
time, even though O(N log N) algorithms exist

Animation

ht = !N/2"
hk = !hk+1/2"

hk = 2k − 1

Θ(N3/2)



Heapsort

Build a max heap from the array: O(N)

call deleteMax N times: O(N log N)

O(1) space

Simple if we abstract heaps

Unstable

Animation



Mergesort

Quintessential divide-and-conquer example

Mergesort each half of the array, merge the results

Merge by iterating through both halves, compare 
the current elements, copy lesser of the two into 
output array

Animation



Mergesort Recurrence

Merge operation is costs O(N)

T(N) = 2 T(N/2) + N

We solved this recurrence for the recursive 
solutions to the homework 1 theory problem

=
log N∑

i=0

2ic
N

2i

=
log N∑

i=0

cN = cN log N



Quicksort

Choose an element as the pivot

Partition the array into elements greater than pivot 
and elements less than pivot

Quicksort each partition



Choosing a Pivot

The worst case for Quicksort is when the partitions 
are of size zero and N-1

Ideally, the pivot is the median, so each partition is 
about half

If your input is random, you can choose the first 
element, but this is very bad for presorted input!

Choosing randomly works, but a better method is...



Median-of-Three

Choose three entries, use the median as pivot

If we choose randomly, 2/N probability of worst 
case pivots

Median-of-three gives 0 probability of worst case, 
tiny probability of 2nd-worst case. (Approx.          )

Randomness less important, so choosing 
(first, middle, last) works reasonably well

2/N3



Partitioning the Array

Once pivot is chosen, swap pivot to end of array. 
Start counters i=1 and j=N-1

Intuition: i will look at less-than partition, j will look 
at greater-than partition

Increment i and decrement j until we find elements 
that don't belong (A[i] > pivot or A[j] < pivot)

Swap (A[i], A[j]), continue increment/decrements

When i and j touch, swap pivot with A[j]



Quicksort Worst Case

Running time recurrence includes the cost of 
partitioning, then the cost of 2 quicksorts

We don't know the size of the partitions, so let i be 
the size of the first partition

T(N) = T(i)+T(N-i-1) + N

Worst case is T(N) = T(N-1) + N



Quicksort Properties

Unstable

Average time O(N log N)

Worst case time 

Space O(log N)/            because we need to store 
the pivots

O(N2)

O(N2)



Summary

Worst Case 
Time

Average 
Time

Space Stable?

Selection

Insertion

Shell

Heap

Merge

Quick

No

Yes

? No

No

Yes/No

No

O(N2) O(N2)

O(N2) O(N2)

O(N2)

O(1)

O(1)

O(1)

O(N)/O(1)

O(N log N)

O(N3/2) O(1)

O(log N)

O(N log N)

O(N log N) O(N log N)

O(N log N)



Selection

Recall selection problem: best solution so far was 
Heapselect

Running time: O(N+k log N)

We should expect a faster algorithm since 
selection should be easier than sorting

Quick Select: choose a pivot, partition array, 
recurse on the partition that contains k’th element



Quickselect Worst Case

Quickselect only recurses one one of the 
subproblems

However, in the worst case, pivot only eliminates 
one element:

T(N) = T(N-1) + N

Same as Quicksort worst case



External Sorting
So far, we have looked at sorting algorithms when 
the data is all available in RAM

Often, the data we want to sort is so large, we can 
only fit a subset in RAM at any time

We could run standard sorting algorithms, but then 
we would be swapping elements to and from disk

Instead, we want to minimize disk I/O, even if it 
means more CPU work



MergeSort

We can speed up external sorting if we have two 
or more disks (with free space) via Mergesort

One nice feature of Mergesort is the merging step 
can be done online with streaming data

Read as much data as you can, sort, write to disk, 
repeat for all data, write output to alternating disks

merge outputs using 4 disks



Simplified Running Time 
Analysis
Suppose random disk i/o cost 10,000 ns

Sequential disk i/o cost 100 ns

RAM swaps/comparisons cost 10 ns

Naive sorting: 10000 N log N

Assume M elements fit in RAM.
External mergesort: 
10 N log M + 100 N (# of sweeps through data)



Counting Merges

After initial sorting, N/M sorted subsets distributed 
between 2 disks

After each run, each pair is merged into a sorted 
subset twice as large.

Full data set is sorted after log(N/M) runs

External sorting: 
10 N log M + 100 N log (N/M)


