Data Structures and
Algorithms

Session 26. April 29, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 6 due before last class: May 4th
* Final Review May 4th

* Exam Wednesday May 13th 1:10-4:00 PM, 633

Review

* Finish Quicksort discussion,
% worst case, average case
% Quickselect
% worst case, average case

* External Sorting

loday's Plan

* Examples of Data Structures used in Artificial
Intelligence and Machine Learning

* Game trees: minimax, search
* Bayesian Graphs

* kd-trees

Artificial Intelligence

* Sub-field of Computer Science concerned with
algorithms that behave intelligently

* or if we're truly ambitious, optimally.
* An Al program is commonly called an agent

* which makes decisions based on its percepts

A.l. In Games

* Al still needs to simplify the environment for its
agents, so games are a nice starting point

* Many board games are turn-based, so we can
take some time to compute a good decision at
each turn

* Deterministic turn-based games can be
represented as game trees

Game Trees

* The root node is the starting state of the game

* Children correspond to possible moves

* If 2-player, every other level is the computer's turn
* The other levels are the adversary's turns

* In a simple game, we can consider/store the whole
tree, make decisions based on the subtrees

Partial Tic-Tac-Toe
Game Tree

)

X
O| X
/X X X
I T 1—" <[5 °
1ol | of |X
EEE ST 1 .
= [T > S5
1ol ol I ST Tx
//’ 0 ..E\\\ \\\x
X X
X X X (@] X110
(0] O] X (@) X
(0]

HEER
HEN
HEN

Tree Strategy

* Thinking about the game as a tree helps organize
computational strategy

* If adversary plays optimally, we can define the
optimal strategy via the minimax algorithm

* Assume the adversary will play the optimal move
at the next level. Use that result to decide which
move is optimal at current level.

Simple Tree

Numerical Rewards

Minimax Details

* Depth first search (postorder) to find leaves;
propagate information up

* Adversary also assume you will play optimally

* Impossible to store full tree for most games, use
heuristic measures

* e.g., Chess piece values, # controlled squares

¥ Cut off after a certain level

Pruning

6 MAX

3 (6{ 5 MIN

5 3 6|7 5 8 MAX
£ 298 proge -
5/16](7]|4 5/13]|6]6 9 7115/(92]|8]|6 MAX

* We can also ignore parts of the tree if we see a
subtree that can't possibly be better than one we
saw earlier

* This is called alpha-beta pruning

* Figure from wikipedia article on alpha-beta pruning

Search

* Some puzzles can be thought of as trees too
* 15-puzzle, Rubik's Cube, Sudoku

¥ Discrete moves move from current state to
children states

* A.l. wants to find the solution state efficiently

8153
21114
6|7

Simple |dea

* Breadth first search; level-order
* Try every move from current state
* Try 2 moves from current state

* Try 3 moves from current state

Another [dea

* Depth first search
* Try a move
* Try another move...

* If we get stuck, backtrack

Heuristic Search

* The main problem is without any knowledge, we
are guessing arbitrarily

* Instead, design a heuristic and choose the next
state to try according to heuristic

* e.qg., # of tiles in the correct location, distance
from maze goal

Probabillistic Inference

* Some of these decisions are too hard to compute
exactly, and often there is insufficient information
to make an exact decision

* Instead, model uncertainty via probability

* An important application for graph theory is using
graphs to represent probabilistic iIndependence

Independent Coins

* 1. Suppose | flip coin twice, what is the probability
of both flips landing heads?

* 2. Compare to if we flip a coin, and if it lands
heads, we buy 2 lottery tickets. If tails, we buy 1
lottery ticket. What is the probability we will win
the lottery?

* In Scenario 1, we reason with less computation by
taking advantage of independence

A Simple Bayesian
Network

<Ran? g‘ sssss D

Basic Rules of Thumb

¥ Trees and DAGs are easier to reason
* We can use similar strategy to Topological sort:

% Only do computation once all incoming
neighbors have been computed

* Cyclic graphs are difficult; NP-hard in some
settings

Machine Learning

* Another related field, Machine Learning, handles
making intelligent decisions after looking at data

* e.qg., a list of surveyed voters, their demographic
information, answers to questions, location, etc.

* We typically think of each of these data points as a
high-dimensional vector

* We need smart data structures to allow efficient
spatial reasoning (e.g., finding nearest neighbors)

Kd-trees

* A kd-tree is a multidimensional binary search tree
% a BST that partitions in k-dimensions

* Each node specifies a dimension (X, y or z).
* Left subtree is less than node in that dimension

* Right subtree is greater than node in that
dimension

y-ax

y-ax

y-ax

* From Wikipedia: kd-tree

Benetits of kd-trees

* Finding the nearest neighbor of a point is more
efficient

* We don’t have to compute the distance between
all other points

* Only siblings and some more distant relatives

* Reduces cost from O(I\llk) to O(log N) if balanced,
but worst case O(N'~*k)

Summary

* Three unrelated examples of Data Structures in
A.l. and Machine Learning

* Tree logic useful in analyzing games in A.l.
* Graph theory useful in probabilistic reasoning

* kd-trees allow fast computation for handling
machine learning data

Final Topics Overview

Big-Oh definitions (Omega, little o)

Arraylists/Linked Lists
Stacks/Queues

Binary Search Trees: AVL, Splay
Tries

Heaps

Huffman Coding Trees

*

Hash Tables: Separate Chaining,
Probing

Graphs: Shortest Path, Max-Flow,
Min Spanning Tree, Euler

Complexity Classes
Disjoint Sets

Sorting: Insertion Sort, Shell Sort,
Merge Sort, Quick Sort, Radix
Sort, Quick Select

