
Data Structures and 
Algorithms
Session 24. Earth Day, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137



Announcements

Homework 6 due before last class: May 4th

Final Review May 4th

Exam Wednesday May 13th 1:10-4:00 PM, 633

cumulative, closed-book/notes



Review

O(M log* N) running time for M unions/finds

Counted cost of each find by two kinds of 
“pennies”: American/Canadian

Basic intuition: Canadian when node is in middle 
of rank group, American when node is between 
groups

Comparison Sort lower bound vs. Radix Sort



Today’s Plan

Radix Sort specifics

Comparison sorting algorithm characteristics

Algorithms: Selection Sort, Insertion Sort, 
Shellsort, Heapsort, Mergesort, Quicksort



Radix Sort with Least 
Significant Digit
CountingSort according to the least significant 
digit

Repeat: CountingSort according to the next least 
significant digit

Each step must be stable

Running time: O(Nk) for maximum of k digits

Space: O(N+b) for base-b number system*



Radix Sort Example
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Analysis

For maximum of k digits (in whatever base), we 
need k passes through the array, O(Nk)

For base-b number system, we need b queues, 
which will end up containing N elements total, so 
O(N+b) space

Stable because if elements are the same, they 
keep being enqueued and dequeued in the same 
order



Comparison Sorts

Of course, Radix Sort only works well for sorting 
keys representable as digital numbers

In general, we must often use comparison sorts

We have proven an                     lower bound for 
running time

But algorithms also have other desirable 
characteristics

Ω(N log N)



Sorting Algorithm 
Characteristics

Worst case running time

Worst case space usage (can it run in place?)

Stability

Average running time/space

(simplicity)



Selection Sort

Swap least unsorted element with first unsorted 
element

Unstable

Running time

In place O(1) space

Algorithm Animation

O(N2)



Insertion Sort

Assume first p elements are sorted. Insert (p+1)'th 
element into appropriate location.

Save A[p+1] in temporary variable t, shift sorted 
elements greater than t, and insert t

Stable

Running time

In place O(1) space

O(N2)



Insertion Sort Analysis

When the sorted segment is i elements, we may 
need up to i shifts to insert the next element

Stable because elements are visited in order and 
equal elements are inserted after its equals

Algorithm Animation

N∑

i=2

i = N(N − 1)/2− 1 = O(N2)



Shellsort

Essentially splits the array into subarrays and runs 
Insertion Sort on the subarrays

Uses an increasing sequence,                 , such 
that            . 

At phase k, all elements       apart are sorted; the 
array is called      -sorted

for every i, 

h1, . . . , ht

h1 = 1

A[i] ≤ A[i + hk]

hk

hk



Shell Sort Correctness

Efficiency of algorithm depends on that elements 
sorted at earlier stages remain sorted in later 
stages

Unstable. Example: 2-sort the following: [5 5 1]



Increment Sequences

Shell suggested the sequence 
and                         , which was suboptimal

A better sequence is 

Shellsort using better sequence is proven 

Often used for its simplicity and sub-quadratic 
time, even though O(N log N) algorithms exist

Animation

ht = !N/2"
hk = !hk+1/2"

hk = 2k − 1

Θ(N3/2)



Heapsort

Build a max heap from the array: O(N)

call deleteMax N times: O(N log N)

O(1) space

Simple if we abstract heaps

Unstable

Animation



Mergesort

Quintessential divide-and-conquer example

Mergesort each half of the array, merge the results

Merge by iterating through both halves, compare 
the current elements, copy lesser of the two into 
output array

Animation



Mergesort Recurrence

Merge operation is costs O(N)

T(N) = 2 T(N/2) + N

We solved this recurrence for the recursive 
solutions to the homework 1 theory problem

=
log N∑

i=0

2ic
N

2i

=
log N∑

i=0

cN = cN log N



Quicksort

Choose an element as the pivot

Partition the array into elements greater than pivot 
and elements less than pivot

Quicksort each partition

Animation



Choosing a Pivot

The worst case for Quicksort is when the partitions 
are of size zero and N-1

Ideally, the pivot is the median, so each partition is 
about half

If your input is random, you can choose the first 
element, but this is very bad for presorted input!

Choosing randomly works, but a better method is...



Median-of-Three

Choose three entries, use the median as pivot

If we choose randomly, 2/N probability of worst 
case pivots

Median-of-three gives 0 probability of worst case, 
tiny probability of 2nd-worst case. (Approx.          )

Randomness less important, so choosing 
(first, middle, last) works reasonably well

2/N3



Partitioning the Array

Once pivot is chosen, swap pivot to end of array. 
Start counters i=1 and j=N-1

Intuition: i will look at less-than partition, j will look 
at greater-than partition

Increment i and decrement j until we find elements 
that don't belong (A[i] > pivot or A[j] < pivot)

Swap (A[i], A[j]), continue increment/decrements

When i and j touch, swap pivot with A[j]



Quicksort Worst Case

Running time recurrence includes the cost of 
partitioning, then the cost of 2 quicksorts

We don't know the size of the partitions, so let i be 
the size of the first partition

T(N) = T(i)+T(N-i-1) + N

Worst case is T(N) = T(N-1) + N



Quicksort Average Case

We'll average over all partition sizes:

T (N) =
2

N − 1

N−1∑

i=0

T (i) + N

NT (N) = 2
N−1∑

i=0

T (i) + N2

(N − 1)T (N − 1) = 2
N−2∑

i=0

T (i) + (N − 1)2



Quicksort Average Case
NT (N) = 2

N−1∑

i=0

T (i) + N2

(N − 1)T (N − 1) = 2
N−2∑

i=0

T (i) + (N − 1)2

NT (N)− (N − 1)T (N − 1) = 2

[
N−1∑

i=0

T (i)−
N−2∑

i=0

T (i)

]

+N2 − (N − 1)2



Quicksort Average Case
NT (N)− (N − 1)T (N − 1) = 2

[
N−1∑

i=0

T (i)−
N−2∑

i=0

T (i)

]

+N2 − (N − 1)2

NT (N)− (N − 1)T (N − 1) = 2T (N − 1) + 2N − 1

NT (N) = (N + 1)T (N − 1) + 2N

T (N)
N + 1

=
T (N − 1)

N
+

2
N + 1



Quicksort Average Case
T (N)
N + 1

=
T (N − 1)

N
+

2
N + 1

T (N − 2)
N − 1

=
T (N − 3)

N − 2
+

2
N − 1

T (2)
3

=
T (1)

2
+

2
3

T (N)
N + 1

=
T (1)

2
+ 2

N+1∑

i=3

1
i

T (N)
N + 1

= O(log N) T (N) = O(N log N)



Quicksort Properties

Unstable

Average time O(N log N)

Worst case time 

Space O(log N)/            because we need to store 
the pivots

O(N2)

O(N2)



Summary

Worst Case 
Time

Average 
Time

Space Stable?

Selection

Insertion

Shell

Heap

Merge

Quick

No

Yes

? No

No

Yes/No

No

O(N2) O(N2)

O(N2) O(N2)

O(N2)

O(1)

O(1)

O(1)

O(N)/O(1)

O(N log N)

O(N3/2) O(1)

O(log N)

O(N log N)

O(N log N) O(N log N)

O(N log N)



Reading

http://www.sorting-algorithms.com/

Weiss Chapter 7


