Data Structures and
Algorithms

Session 24. Earth Day, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137




Announcements

* Homework 6 due before last class: May 4th
* Final Review May 4th
* Exam Wednesday May 13th 1:10-4:00 PM, 633

¥ cumulative, closed-book/notes




Review

% O(M log* N) running time for M unions/finds

% Counted cost of each find by two kinds of
“pennies”: American/Canadian

*¥ Basic intuition: Canadian when node is in middle
of rank group, American when node is between
groups

* Comparison Sort lower bound vs. Radix Sort




loday’s Plan

* Radix Sort specifics
* Comparison sorting algorithm characteristics

* Algorithms: Selection Sort, Insertion Sort,
Shellsort, Heapsort, Mergesort, Quicksort




Radix Sort with Least
Significant Digit

* CountingSort according to the least significant
digit

* Repeat: CountingSort according to the next least
significant digit

* Each step must be stable
* Running time: O(NK) for maximum of k digits

* Space: O(N+b) for base-b number system”
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Radix Sort Example
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Analysis

* For maximum of k digits (in whatever base), we
need k passes through the array, O(NKk)

* For base-b number system, we need b queues,
which will end up containing N elements total, so
O(N+b) space

* Stable because if elements are the same, they
keep being enqueued and dequeued in the same
order




Comparison Sorts

* Of course, Radix Sort only works well for sorting
keys representable as digital numbers

* In general, we must often use comparison sorts

* We have proven an (N log N) lower bound for
running time

* But algorithms also have other desirable
characteristics




Sorting Algorithm
Characteristics

* Worst case running time

* Worst case space usage (can it run in place?)
* Stability

* Average running time/space

* (simplicity)




Selection Sort

* Swap least unsorted element with first unsorted
element

* Unstable
% Running time O(N?)
* In place O(1) space

* Algorithm Animation




INnsertion Sort

* Assume first p elements are sorted. Insert (p+1)'th
element into appropriate location.

* Save A[p+1] in temporary variable t, shift sorted
elements greater than t, and insert t

* Stable
% Running time O(N?)

* In place O(1) space




Insertion Sort Analysis

* When the sorted segment is i elements, we may

need up to i shifts to insert the next element
N

Y i=N(N-1)/2-1=0(N?)

1=2

* Stable because elements are visited in order and
equal elements are inserted after its equals

* Algorithm Animation




Shellsort

* Essentially splits the array into subarrays and runs
Insertion Sort on the subarrays

* Uses an increasing sequence, hq,..., hs such
that hy = 1.

% At phase k, all elements h apart are sorted; the
array is called hg-sorted

¥ for every i, Al1] < Al + hi]




Shell Sort Correctness

* Efficiency of algorithm depends on that elements
sorted at earlier stages remain sorted in later
stages

* Unstable. Example: 2-sort the following: [5 5 1]




Increment Sequences

% Shell suggested the sequence h: = [IV/2]
and hp = |hxa1/2], which was suboptimal

* A better sequence is hr = 2" — 1
% Shellsort using better sequence is proven ©(N?*/?)

* Often used for its simplicity and sub-quadratic
time, even though O(N log N) algorithms exist

% Animation




Heapsort

* Build a max heap from the array: O(N)
* call deleteMax N times: O(N log N)

* O(1) space

* Simple if we abstract heaps

* Unstable

¥ Animation




Mergesort

* Quintessential divide-and-conquer example
* Mergesort each half of the array, merge the results

* Merge by iterating through both halves, compare
the current elements, copy lesser of the two into
output array

% Animation




Mergesort Recurrence

* Merge operation is costs O(N)
*¥T(N)=2T(N/2) + N

¥ We solved this recurrence for the recursive
solutions to the homework 1 theory problem

, N
= iz:; 205
log N




Quicksort

* Choose an element as the pivot

* Partition the array into elements greater than pivot
and elements less than pivot

* Quicksort each partition

¥ Animation




Choosing a Pivot

* The worst case for Quicksort is when the partitions
are of size zero and N-1

* |ldeally, the pivot is the median, so each partition is
about half

* If your input is random, you can choose the first
element, but this is very bad for presorted input!

* Choosing randomly works, but a better method is...




Median-of- T hree

* Choose three entries, use the median as pivot

* If we choose randomly, 2/N probability of worst
case pivots

* Median-of-three gives 0 probability of worst case,
tiny probability of 2nd-worst case. (Approx. 2/N*?)

* Randomness less important, so choosing
(first, middle, last) works reasonably well




Partitioning the Array

* Once pivot is chosen, swap pivot to end of array.
Start counters i=1 and j=N-1

* Intuition: 1 will look at less-than partition, j will look
at greater-than partition

* Increment i and decrement j until we find elements
that don't belong (A[i] > pivot or A[j] < pivot)

* Swap (A[i], A[j]), continue increment/decrements

* When i and j touch, swap pivot with A[j]




Quicksort Worst Case

* Running time recurrence includes the cost of
partitioning, then the cost of 2 quicksorts

* We don't know the size of the partitions, so let i be
the size of the first partition

* T(N) = T(1))+T(N-i-1) + N
* Worst case is T(N) = T(N-1) + N




Quicksort Average Case

* We'll average over all partition sizes:

T(N) = % ._ T(G)+ N
NT(N) =2 z_: T(i) + N*

(N -1)T(N —-1)=2 i T(i) + (N —1)?




Quicksort Average Case
NT(N) =2 i T(i) + N?




Quicksort Average Case

NT(N)— (N —1DT(N —1) = 2 i T(i) — i (i)

+J_\f2 — (N —1)*
NT(N)— (N - D)T(N —1) = 2T(N —1)4+2N —1
NT(N)= (N +1)T(N —1) + 2N

T(N) T(N-1) 2




Quicksort Average Case

T(N) T(N-1) 2
N+1 N +N+1
T(N—-2) T(N-3) 2
N—-1  N-=-2 +N—1
T(2) T@1) 2
3 "2 T3

N = OllogN) T(N) = O(Nlog N)




Quicksort Properties

* Unstable
* Average time O(N log N)
* Worst case time O(N?)

* Space O(log N)/O(N?) because we need to store
the pivots




Summary

Worst Case

Average

Time Time Space Stable?
Selection O(N?) O(N?) O(1) No
Insertion O(N?) O(N?) O(1) Yes
Shell O(N3/?) ? O(1) No
Heap |O(NlogN)|O(NlogN) O(1) No
Merge |O(NlogN)|O(NlogN)|O(N)/O(1)| Yes/No
Quick O(N?) |O(NlogN)| O(logN) No




Reading

* http://www.sorting-algorithms.com/

* Weiss Chapter 7




