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Announcements

Homework 6 up later today; 
Last take-home assignment

due before last class: May 4th

Final Review May 4th

Exam Wednesday May 13th 1:10-4:00 PM, 633

cumulative, closed-book/notes



Review

Disjoint Set ADT

find(i): return the equivalence class of i'th object

union(i,j): make i's relatives equivalent to j's

stored in trees with parent pointers; 
implemented with array

Union-by-rank and path compression



Today's Plan

Prove O(M log* N) running time for M unions/finds

Sorting lower bound

Radix Sort



Worst Case Bound

A slightly looser, but easier to prove/understand 
bound is that any sequence of 
operations will cost O(M log* N) running time

log* N is the number of times the logarithm needs 
to be applied to N until the result is 

e.g., log*(65536) = 4 because 
log(log(log(log(65536)))) = 1

M = Ω(N)

≤ 1



Proof Preliminaries

Plan: upper bound the number of nodes per rank, 
partition ranks into groups

Lemma 1: a node of rank r must have at least      
descendents

Proof by induction, same as union-by-height proof

Proof is unchanged because rank is exactly 
height-without-compression

2r



Initial Lemmas

Lemma 2: The number of nodes of rank r is at 
most

Proof. A node with rank r is the root of a subtree 
with at least      nodes. Any other nodes with rank r 
must root other subtrees.

Lemma 3: The ranks of nodes on a path from leaf 
to root increase monotonically

N/2r

2r



Rank Groups

We will use some group function G(r), which 
returns the group of rank r

We refer to the inverse of this function as

i.e., for group g, F(g) is the maximum rank of 
group g. 

F = G−1

F (g) = max{r|G(r) = g}



Rank Groups
G(r) = log* r
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Operation Accounting

union operations cost O(1), so we won’t even 
count them for this analysis

find costs O(1) for each vertex along the path

We “pay a penny” for each vertex, sometimes we 
pay an American penny and sometimes Canadian

We will use groups to decide when to pay each



American vs. Canadian

For vertex v, if v or the parent of v is the root, or if 
the parent of v is in a different rank group than v, 
pay one American penny to the bank

Otherwise, deposit a Canadian penny into v

In the end, we will count both totals for our bound

Lemma 4: for a find(v), # pennies deposited = to 
the number of nodes along path from v to root



American Pennies

Lemma 5: total deposits of American pennies are 
at most M(G(N)+2)

Proof. Each find operation deposits two American 
pennies: one for the root and one for its child. 

Also, one American penny is deposited for each 
change in group. Along any path, at most G(N) 
group changes can occur, so each find costs at 
most G(N)+2



Canadian Pennies I
Lemma 6: The number of vertices V(g) in rank 
group g is at most

Proof. Lemma 2 says at most          nodes of rank r

N/2F (g−1)

N/2r

V (g) ≤
F (g)∑

r=F (g−1)+1

N

2r
≤

∞∑

r=F (g−1)+1
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2F (g−1)



Canadian Pennies II

Lemma 7: The maximum number of Canadian 
pennies deposited in all nodes in rank group g is 
at most

Proof. Each vertex in the group can receive at 
most                                         Canadian pennies 
before its parent isn’t in the rank group. 

Lemma 8: # Canadian pennies is at most

NF (g)/2F (g−1)

F (g)− F (g − 1) ≤ F (g)

N

G(N)∑

g=1

F (g)/2F (g−1)



Total Pennies

Combing Lemmas 5 and 8, the cost of M 
operations is at most:

Choose, log* as G(r) function. The inverse F 
function is then              , which nicely cancels out 
on the term on the right.

Theorem:                     operations cost O(M log* N)

M(G(N) + 2) + N

G(N)∑

g=1

F (g)/2F (g−1)

2F (i−1)

M(G(N) + 2) + NG(N)

M = Ω(N)



Mazes

For HW6, we'll be using the Disjoint Set ADT to 
build random mazes

The method starts with a grid graph, where vertical 
and horizontal neighbors share edges

Then, essentially, you run Kruskal's algorithm 
randomly (random spanning tree)

Refer to hw6 pdf and Weiss Section 8.7 for more



Data Structures

At this point, we have covered all the data 
structures in the course curriculum

We can reflect upon how stronger our toolbox is 
now that we know of these structures

And we have a flavor of how to intelligently design 
our own data structures 



Sorting

Given array A of size N, reorder A so its elements 
are in order.

"In order" with respect to a consistent 
comparison function



The Bad News

Sorting algorithms typically compare two elements 
and branch according to the result of comparison

Theorem: An algorithm that branches from the 
result of pairwise comparisons must use  
operations to sort worst-case input

Proof. Consider the decision tree

Ω(N log N)



Comparison Sort 
Decision Tree: N=2
Each node in this decision tree represents a state

Move to child states after any branch

Consider the possible orderings at each state

a>b
b>a

b>a

a>b

b>a

a>b



b>a>c
b>c>a

b>c

c>b
c>b>a

Decision Tree: N=3

a>b>c
a>c>b
b>a>c
b>c>a
c>a>b
c>b>a

a>b>c
a>c>b
c>a>b

b>a>c
b>c>a
c>b>a

b>a

a>b

a>b>c
a>c>b

a>c

c>a
c>a>b

a>c

c>a

b>a>c

b>c>a

a>b>c

a>c>b

b>c

c>b



Lower Bound Proof

The worst case is the deepest leaf; the height

Lemma 7.1: Let T be a binary tree of depth d. 
Then T has at most       leaves

Proof. By induction.  Base case: d = 0, one leaf

Otherwise, we have root and left/right subtrees 
of depth at most d-1. Each has at most 
leaves

2d

2d−1



Lower Bound Proof

Lemma 7.1: Let T be a binary tree of depth d. 
Then T has at most       leaves

Lemma 7.2: A binary tree with L leaves must have 
[height] at least 

Theorem proof. There are N! leaves in the binary 
decision tree for sorting. Therefore, the deepest 
node is at depth 

2d

!log L"

log(N !)



Lower Bound Proof
log(N !)

= log(N(N − 1)(N − 1) . . . (2)(1))
= log N + log(N − 1) + log(N − 2) + . . . + log 2 + log 1
≥ log N + log(N − 1) + log(N − 2) + . . . + log(N/2)

≥ N

2
log

N

2

≥ N

2
log N − N

2
= Ω(N log N)



Comparison Sort 
Lower Bound
Decision tree analysis provides nice mechanism 
for lower bound

However, the bound only allows pairwise 
comparisons. 

We've already learned a data structure that beats 
the bound

What is it?



Trie Running Time

Insert items into trie then preorder traversal

Each insert costs O(k), for length of word k

N inserts cost O(Nk)

Preorder traversal costs O(Nk), because the worst 
case trie has each word as a leaf of a disjoint path 
of length k

This is a very degenerate case



Counting Sort

Another simple sort for integer inputs

1. Treat integers as array indices (subtract min)

2. Insert items into array indices

3. Read array in order, skipping empty entries

4. Laugh at comparison sort algorithms



Bucket Sort

Like Counting Sort, but less wasteful in space

Split the input space into k buckets

Put input items into appropriate buckets

Sort the buckets using favorite sorting algorithm



Radix Sort

Trie method and CountingSort are forms of Radix 
Sort

Radix Sort sorts by looking at one digit at a time

We can start with the least significant digit or the 
most significant digit

least significant digit first provides a stable sort

trie's use most significant, so let's look at least...



Radix Sort with Least 
Significant Digit

BucketSort according to the least significant digit

Repeat: BucketSort contents of each multi-item 
bucket according to the next least significant digit

Running time: O(Nk) for maximum of k digits

Space: O(Nk)



Reading

http://www.sorting-algorithms.com/

Weiss Chapter 7


