Data Structures and
Algorithms

Session 23. April 20, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137

Announcements

* Homework 6 up later today;
Last take-home assignment

* due before last class: May 4th
* Final Review May 4th
* Exam Wednesday May 13th 1:10-4:00 PM, 633

% cumulative, closed-book/notes

Review

* Disjoint Set ADT
* find(i): return the equivalence class of i'th object
* union(i,j): make i's relatives equivalent to j's

* stored In trees with parent pointers;
implemented with array

* Union-by-rank and path compression

loday's Plan

* Prove O(M log* N) running time for M unions/finds
* Sorting lower bound

% Radix Sort

Worst Case Bound

* A slightly looser, but easier to prove/understand
bound is that any sequence of M = Q(N)
operations will cost O(M log* N) running time

* log”™ N is the number of times the logarithm needs
to be applied to N until the result is <1

* e.g., 10g*(65536) = 4 because
log(log(log(log(65536)))) = 1

Proof Preliminaries

* Plan: upper bound the number of nodes per rank,
partition ranks into groups

¥ Lemma 1: a node of rank r must have at least 2"
descendents

* Proof by induction, same as union-by-height proof

* Proof is unchanged because rank is exactly
height-without-compression

INitial Lemmas

¥ Lemma 2: The number of nodes of rank r is at
most N /2"

% Proof. A node with rank r is the root of a subtree
with at least 2" nodes. Any other nodes with rank r
must root other subtrees.

* Lemma 3: The ranks of nodes on a path from leaf
to root increase monotonically

Rank Groups

* We will use some group function G(r), which
returns the group of rank r

% We refer to the inverse of this functionas F' = G~*

* i.e., for group g, F(g) is the maximum rank of
group g.

* F(g) = max{r|G(r) = g}

Rank Groups
G(r) = log* r

G(r) F(9)
r=2 1 g=1 2
r=[3,4] 2 g=2 4
r=[5,16] 3 g=3 16
r=[17,65536] 4 g=4 65536

Operation Accounting

* union operations cost O(1), so we won’t even
count them for this analysis

* find costs O(1) for each vertex along the path

* We “pay a penny” for each vertex, sometimes we
pay an American penny and sometimes Canadian

* We will use groups to decide when to pay each

American vs. Canadian

* For vertex v, if v or the parent of v is the root, or if
the parent of v is in a different rank group than v,
pay one American penny to the bank

* Otherwise, deposit a Canadian penny into v
* |In the end, we will count both totals for our bound

* Lemma 4: for a find(v), # pennies deposited = to
the number of nodes along path from v to root

American Pennies

* Lemma 5: total deposits of American pennies are
at most M(G(N)+2)

* Proof. Each find operation deposits two American
pennies: one for the root and one for its child.

* Also, one American penny is deposited for each
change in group. Along any path, at most G(N)
group changes can occur, so each find costs at
most G(N)+2

Canadian Pennies |

* Lemma 6: The number of vertices V(g) in rank
group g is at most N/279~

% Proof. Lemma 2 says at most N/2" nodes of rank r

F(g)

N = N
Vig) < Z or < Z or
r=F(g—1)+1 r=F(g—1)+1
- 1 N =1
< N), o7 = QF(g- D11) 9s
r=F(g—1)+1 s=0
N
<

2F(g—1)

Canadian Pennies |

¥ Lemma 7: The maximum number of Canadian

pennies deposited in all nodes in rank group g is
at most NF(g)/2(9—1

* Proof. Each vertex in the group can receive at
most F'(g) — F(g — 1) < F(g) Canadian pennies
before its parent isn’t in the rank group.

* Lemma 8: # Canadian pennies is at most
G(N)

N > F(g)/27"Y

Total Pennies

* Combing Lemmas 5 and 8, the cost of M
operations is at most: G(N)

M(G(N)+2)+N Y F(g)/2"™Y
g=1
* Choose, log* as G(r) function. The inverse F
function is then 27(=1) which nicely cancels out
on the term on the right.

* Theorem: M = Q(N) operations cost O(M log* N)
M(G(N)+2)+ NG(N)

Vlazes

* For HW6, we'll be using the Disjoint Set ADT to
build random mazes

* The method starts with a grid graph, where vertical
and horizontal neighbors share edges

* Then, essentially, you run Kruskal's algorithm
randomly (random spanning tree)

* Refer to hwo pdf and Weiss Section 8.7 for more

Data Structures

* At this point, we have covered all the data
structures in the course curriculum

* We can reflect upon how stronger our toolbox is
now that we know of these structures

* And we have a flavor of how to intelligently design
our own data structures

Sorting

* Given array A of size N, reorder A so its elements
are in order.

* "In order" with respect to a consistent
comparison function

The Bad News

* Sorting algorithms typically compare two elements
and branch according to the result of comparison

* Theorem: An algorithm that branches from the
result of pairwise comparisons must use Q(N log N)
operations to sort worst-case input

% Proof. Consider the decision tree

Comparison Sort
Decision [ree: N=2

* Each node in this decision tree represents a state
* Move to child states after any branch

* Consider the possible orderings at each state

b>a

b>a
a>b
b>a

asp | a>b

Decision Iree: N=3

a>b

a>b>c
a>c>b
b>a>c
b>c>a
c>a>b
c>b>a

/

.

b>a

a>C

a>b>c
a>c>b
c>a>b

/

B

C>a

b>c

b>a>c
b>c>a
c>b>a

c>b

c>a>b

b>c
a>b>c
a>c>b

c>b

a>C

b>a>c
b>c>a

]

iy

C>a

c>b>a

a>b>c

a>c>b

b>a>c

b>c>a

Lower Bound Proof

* The worst case is the deepest leaf; the height

* Lemma 7.1: Let T be a binary tree of depth d.
Then T has at most 2% leaves

* Proof. By induction. Base case: d = 0, one leaf

* Otherwise, we have root and left/right subtrees
of depth at most d-1. Each has at most 2%~*
leaves

Lower Bound Proof

* Lemma 7.1: Let T be a binary tree of depth d.
Then T has at most 2¢ leaves

* Lemma 7.2: A binary tree with L leaves must have
[height] at least |log L]

* Theorem proof. There are N! leaves in the binary
decision tree for sorting. Therefore, the deepest
node is at depth log(N!)

Lower Bound Proof

log(N!)

log(N(N —=1)(N —1)...(2)(1))
log N +log(N — 1) +1log(N —2)+...+log2+log1

log N +log(N — 1) +log(N —2) + ...+ log(N/2)

N, N
O
9 %875

N N
— log N — —
2 2

QQ(Nlog N)

AVARRN AVARN]

[V

Comparison Sort
Lower Bound

* Decision tree analysis provides nice mechanism
for lower bound

* However, the bound only allows pairwise
comparisons.

* We've already learned a data structure that beats
the bound

* What is it?

Irie Running Time

* Insert items into trie then preorder traversal
* Each insert costs O(k), for length of word k
* N inserts cost O(NKk)

* Preorder traversal costs O(Nk), because the worst
case trie has each word as a leaf of a disjoint path
of length k

* This is a very degenerate case

Counting Sort

* Another simple sort for integer inputs

* 1. Treat integers as array indices (subtract min)
* 2. Insert items into array indices

* 3. Read array in order, skipping empty entries

* 4. Laugh at comparison sort algorithms

Bucket Sort

* Like Counting Sort, but less wasteful in space
* Split the input space into k buckets
* Put input items into appropriate buckets

* Sort the buckets using favorite sorting algorithm

Radix Sort

* Trie method and CountingSort are forms of Radix
Sort

* Radix Sort sorts by looking at one digit at a time

* We can start with the least significant digit or the
most significant digit

* least significant digit first provides a stable sort

* trie's use most significant, so let's look at least...

Radix Sort with Least
Significant Digit

* BucketSort according to the least significant digit

* Repeat: BucketSort contents of each multi-item
bucket according to the next least significant digit

* Running time: O(NKk) for maximum of k digits

* Space: O(Nk)

Reading

* http://www.sorting-algorithms.com/

* Weiss Chapter 7

