
Data Structures and
Algorithms
Session 15. March 23, 2009

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3137

Announcements

Homework 4 up on website

New GraphDraw.java, should fix Concurrency
Exceptions

Homework 3 solutions up

Today’s Plan

Midterm Solutions

Huffman Coding Trees

Data compression method

Midterm

Average was 82 out of 100

Scaling formula: 100*(x+30)/130

0 20 40 60 80 100
0

5

10

Raw Score

Huffman Codes

Basic lossless data compression

General purpose codes are fixed length:

e.g., ASCII character code is 7 bits
‘a’ is 7 bits, ‘!’ is 7 bits, ‘~’ is 7 bits

Strategy: encode more common characters with
shorter codes

Example

“a man a plan a canal panama”

7 characters: a m n p l c (space)

We can use 3 bits to create a unique code for each

Resulting encoding is 27*3 = 81 bits:
000 110 001 000 010 110 000 110 011 100 000 010 110 000 110 101 000
010 000 100 110 011 000 010 000 001 000

a m n p l c space
000 001 010 011 100 101 110

Tree Representation

We can think of binary codes as binary tries

Each node can have a 0 (left) or a 1 child (right)

a m n p c l (space)

Huffman’s Algorithm
Compute character frequencies:
a 10, m 2, n 4, p 2, c 1, l 2, (space) 6

Create forest of 1-node trees for all the characters.

Let the weight of the trees be the sum of the
frequencies of its leaves

Repeat until forest is a single tree:
Merge the two trees with minimum weight.
Merging sums the weights.

Example

10
a

2
m

4
n

2
p

1
c

2
l

6
(sp)

Example

10
a

2
m

4
n

2
p

1
c

2
l

6
(sp)3

Example

10
a

2
m

4
n

2
p

1
c

2
l

6
(sp)34

Example

10
a

2
m

4
n

2
p

1
c

2
l

6
(sp)

3

4 7

Example

10
a

2
m

4
n

2
p

1
c

2
l

6
(sp) 34

710

Example

10
a

2
m

4
n

2
p

1
c

2
l

6
(sp) 34

710

17

Example

10
a

2
m

4
n

2
p

1
c

2
l

6
(sp) 34

710

17

27

Example

a

m

n

p cl

(sp)

0

1000 1001

101 110

1110 1111

Resulting Code

“a man a plan a canal panama”
0 101 1000 0 110 101 0 101 1110 1001 0 110 101
0 101 1111 0 110 0 1001 101 1110 0 110 0 1000 0

68 bits

a m n p l c space
0 1000 110 1110 1001 1111 101

Huffman Details

We can manage the forest with a priority queue:

buildHeap first,

find the least weight trees with 2 deleteMins,

after merging, insert back to heap.

In practice, also have to store coding tree, but the
payoff comes when we compress larger strings

Optimality of Huffman

Induction: Suppose Huffman tree is optimal for N
characters. What about N+1 characters?

Lemma 1: Optimal tree is full

Lemma 2: the 2 least frequent characters are at
the deepest level in optimal tree

Lemma 3: Swapping characters at same depth
doesn’t affect optimality

Optimality of Huffman
Induction: Suppose Huffman tree is optimal for N
characters. What about N+1 characters?

Lemma 1: Optimal tree is full

Lemma 2: the 2 least frequent characters are at
the deepest level in optimal tree

Lemma 3: Swapping characters at same depth
doesn’t affect optimality

Lemma 4: An optimal tree exists where the least
frequent characters are siblings at deepest level.

Optimality of Huffman

number of bits of an encoding is

F is the frequency of the character, D is the depth
in the tree (the number of bits)

Create new tree T* by removing least frequent
chars and replacing with a meta-character whose
frequency is the frequency of both chars,

meta-character is one level less deep

B(T) =
N+1∑

i=1

FiDi

Optimality of Huffman

Proof by contradiction: Assume there is a different
tree T’ that is better than T

That is a contradiction because T* has N
characters, which means Huffman is optimal via
our inductive hypothesis

B(T) = B(T∗) + F1 + F2

B(T ′) < B(T)
B(T ′∗) + F1 + F2 < B(T∗) + F1 + F2

B(T ′∗) < B(T∗)

Optimality of Huffman

Assuming falseness of inductive step produced
contradiction to inductive hypothesis

Therefore, if Huffman codes are optimal for N
characters, they are also for N+1 characters

Huffman is obviously optimal for 2 characters

Huffman codes are optimal

Reading

Homework 4

Weiss 10.1.2

