Announcements

- Homework 4 up on website
- New GraphDraw.java, should fix Concurrency Exceptions
- Homework 3 solutions up
Today’s Plan

- Midterm Solutions
- Huffman Coding Trees
- Data compression method
Midterm

Average was 82 out of 100

Scaling formula: $100 \times \frac{x+30}{130}$
Huffman Codes

- Basic lossless data compression
- General purpose codes are fixed length:
 - e.g., ASCII character code is 7 bits
 - ‘a’ is 7 bits, ‘!’ is 7 bits, ‘~’ is 7 bits
- Strategy: encode more common characters with shorter codes
Example

- “a man a plan a canal panama”
- 7 characters: a m n p l c (space)
- We can use 3 bits to create a unique code for each

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>m</th>
<th>n</th>
<th>p</th>
<th>l</th>
<th>c</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
</tr>
</tbody>
</table>

- Resulting encoding is $27 \times 3 = 81$ bits:

```
000 110 001 000 010 110 000 110 011 100 000 010 110 000 110 101 000
010 000 100 110 011 000 010 000 001 000
```
Tree Representation

- We can think of binary codes as binary tries
- Each node can have a 0 (left) or a 1 child (right)
Huffman’s Algorithm

- Compute character frequencies:
 a 10, m 2, n 4, p 2, c 1, l 2, (space) 6

- Create forest of 1-node trees for all the characters.

- Let the **weight** of the trees be the sum of the frequencies of its leaves

- Repeat until forest is a single tree:
 Merge the two trees with minimum weight.
 Merging sums the weights.
Example

10 a 2 m 4 n 2 p 1 c 6 (sp) 2 l
Example

10 a
2 m
4 n
3
 2 p
 1 c
6 (sp)
2 l
Example
Example
Example
Example
Example
Example
Resulting Code

<table>
<thead>
<tr>
<th>a</th>
<th>m</th>
<th>n</th>
<th>p</th>
<th>l</th>
<th>c</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>110</td>
<td>1110</td>
<td>1001</td>
<td>1111</td>
<td>101</td>
</tr>
</tbody>
</table>

• “a man a plan a canal panama”
0 101 1000 0 110 101 0 101 1110 1001 0 110 101
0 101 1111 0 110 0 1001 101 1110 0 110 0 1000 0

• 68 bits
Huffman Details

- We can manage the forest with a priority queue:
 - `buildHeap` first,
 - find the least weight trees with 2 `deleteMin`s,
 - after merging, `insert` back to heap.
- In practice, also have to store coding tree, but the payoff comes when we compress larger strings
Optimality of Huffman

Induction: Suppose Huffman tree is optimal for N characters. What about $N+1$ characters?

Lemma 1: Optimal tree is full

Lemma 2: the 2 least frequent characters are at the deepest level in optimal tree

Lemma 3: Swapping characters at same depth doesn’t affect optimality
Optimality of Huffman

- Induction: Suppose Huffman tree is optimal for N characters. What about $N+1$ characters?

- Lemma 1: Optimal tree is full

- Lemma 2: the 2 least frequent characters are at the deepest level in optimal tree

- Lemma 3: Swapping characters at same depth doesn’t affect optimality

- Lemma 4: An optimal tree exists where the least frequent characters are siblings at deepest level.
Optimality of Huffman

- number of bits of an encoding is \(B(T) = \sum_{i=1}^{N+1} F_i D_i \)
- \(F \) is the frequency of the character, \(D \) is the depth in the tree (the number of bits)
- Create new tree \(T^* \) by removing least frequent chars and replacing with a meta-character whose frequency is the frequency of both chars,
- meta-character is one level less deep
Optimality of Huffman

\[B(T) = B(T^*) + F_1 + F_2 \]

Proof by contradiction: Assume there is a different tree \(T' \) that is better than \(T \)

\[
B(T') < B(T) \\
B(T'^*) + F_1 + F_2 < B(T^*) + F_1 + F_2 \\
B(T'^*) < B(T^*)
\]

That is a contradiction because \(T^* \) has \(N \) characters, which means Huffman is optimal via our inductive hypothesis
Optimality of Huffman

- Assuming falseness of inductive step produced contradiction to inductive hypothesis
- Therefore, if Huffman codes are optimal for \(N \) characters, they are also for \(N+1 \) characters
- Huffman is obviously optimal for 2 characters
- Huffman codes are optimal
Reading

- Homework 4
- Weiss 10.1.2