Data Structures and Algorithms **Session 13. March 4, 2009** **Instructor: Bert Huang** http://www.cs.columbia.edu/~bert/courses/3137 #### Announcements - * Homework 3 is out. Due 3/9 - * Sample midterm problems on Courseworks - * Midterm review March 9th - * Midterm Exam March 11th #### Review - * Solving the Young Tableaux Recurrences - * buildHeap description and analysis - ***** HW2 solutions ## Today's Plan - * Clarification about isomorphism - * buildHeap example - * HeapSort and HeapSelect #### Isomorphism in Trees - * iso means equal, morph means shape - * Isomorphic means "having the same shape" - * Ignore left and right, element data - * Consider only structural properties: - * How many children? How many siblings? How many cousins? How many grandchildren? # Isomorphic Binary Trees # Not Isomorphic Trees # Not Isomorphic Trees ## buildHeap - * Start at deepest non-leaf node - * in array, this is node N/2 - * percolateDown on all nodes in reverse level-order - # for i = N/2 to 1 percolateDown(i) | 6 | 3 | 11 | 7 | 14 | 8 | 5 | 15 | 1 | 2 | 4 | 13 | 9 | 10 | 12 | | |---|---|----|---|----|---|---|----|---|---|---|----|---|----|----|--| |---|---|----|---|----|---|---|----|---|---|---|----|---|----|----|--| #### Selection - ** Recall the selection problem: findKth(k,A[]) - * find the kth smallest element in A - * Old method: - Sort the array, then return the kth element - * Sort the first k elements, insert the remaining (N-k) elements in the proper place ### HeapSelect - * run buildHeap on the array A - * O(N) - ** call deleteMin() k times - * k O(log N) = O(k log N) - ** HeapSelect runs in O(N+k log N) #### HeapSort - * Naturally, we can use this idea to sort the array - * Method 1: - * buildHeap on the array - * copy output of deleteMin into new array N times - * buildHeap costs O(N), deleteMin costs O(log N) - * Heapsort 1 costs O(N+N log N)=O(N log N) #### HeapSort in Place - * We don't need to allocate a new array - * Instead, use a max-heap - * Reverse the heap order property: deleteMax - * After each deleteMax, heap size is 1 less - * Stick the extracted max in the freed space # HeapSort Animation Downloaded from http://en.wikipedia.org/wiki/Heapsort # Assignments - ***** Continue HW3 - * Weiss 7.5 if you want to read about HeapSort - * Practice midterm samples