Announcements

- Homework 3 is out. Due 3/9
- Sample midterm problems on Courseworks
- Midterm review March 9th
- Midterm Exam March 11th
- No work during break
Review

- Note about Young Tableaux *
- Visualization of Splay Trees
- Tries

- Definition of Priority Queues
 - Heap implementation
Today’s Plan

- Solving the Young Tableaux Recurrences
- buildHeap description and analysis
- HW2 solutions
Young Tableaux

- Analysis of recursive solution to HW1’s sorted 2d array problem is related to MergeSort and buildHeap

- MergeSort splits array into two subproblems, linear cost to merge

- We’ll look at buildHeap later in today’s class
Young Tableaux

Using simple linear search, the running time is

\[T(N) = 2T(N/2) + cN \]

\[= \sum_{i=0}^{\log N} 2^i c \frac{N}{2^i} \]

\[= \sum_{i=0}^{\log N} cN \]

\[= cN \log N \]
Young Tableaux with Binary Search

* Using binary search, the running time is:

\[T(N) = 2T(N/2) + \log N = \sum_{i=0}^{\log N} 2^i c \log \frac{N}{2^i} \]

\[= \sum_{i=0}^{\log N} 2^i \left(\log N - \log 2^i \right) = \sum_{i=0}^{\log N} 2^i \left(\log N - i \right) \]

* Let \(h = \log N \)

\[T(2^h) = \sum_{i=0}^{h} 2^i (h - i) \]
Young Tableaux with Binary Search

\[T(2^h) = \sum_{i=0}^{h} 2^i (h - i) \quad 2T(N) = \sum_{i=0}^{h} 2^{i+1} (h - i) \]

\[T(N) = 2T(N) - T(N) = \]
\[2^1 (h - 0) + 2^2 (h - 1) + 2^3 (h - 2) + \ldots + 2^h (1) + 2^{h+1} (0) \]
\[- [2^0 (h - 0) + 2^1 (h - 1) + 2^2 (h - 2) + \ldots + 2^{h-1} (1) + 2^h (0)] \]
Young Tableaux with Binary Search

\[T(2^h) = \sum_{i=0}^{h} 2^i (h - i) \]
\[2T(N) = \sum_{i=0}^{h} 2^{i+1} (h - i) \]

\[T(N) = 2T(N) - T(N) = 2^1 (h - 0) + 2^2 (h - 1) + 2^3 (h - 2) + \ldots + 2^h (1) + \]
\[- [2^0 (h - 0) + 2^1 (h - 1) + 2^2 (h - 2) + \ldots + 2^{h-1} (1) + 2^h (0)] \]

\[= -h + \sum_{i=1}^{h} 2^i = 2^{h+1} - 2 - h \]
\[= 2^{\log N + 1} - 2 - \log N = 2N - 2 - \log N \]
Heap operations

- Recall the basic two heap operations: insert, deleteMin
- Use percolateUp and percolateDown
- If we want to change a key, we can also just use percolateUp and percolateDown
- The cost of each is constant + cost of percolate up/down
Building a Heap from an Array

- How do we construct a binary heap from an array?
- Simple solution: insert each entry one at a time
- Each insert is worst case $O(\log N)$, so creating a heap in this way is $O(N \log N)$
- Instead, we can jam the entries into a full binary tree and run `percolateDown` intelligently
buildHeap

- Start at deepest non-leaf node
 - in array, this is node N/2
- percolateDown on all nodes in reverse level-order
 - for i = N/2 to 1
 percolateDown(i)
Analysis of buildHeap

- N/2 percolateDown calls: $O(N \log N)$?
- But calls to deeper nodes are much cheaper
- Percolate Down costs the height of the node
- Let h be height of tree. 1 node at height h
- 2 nodes at $(h-1)$, 4 nodes at $(h-2)$...
- 2^h nodes at height 0
Analysis of buildHeap

- Recall that $h = \log N$
- Total height of all nodes in heap is:
 \[T(N) = \sum_{i=0}^{h} 2^i (h - i) \]
- We solved this earlier today: $T(N) = O(N)$
HW2 Solutions

* Up on Courseworks
Assignments

- Homework 3
- Look at practice problems
- Weiss 6.4