Data Structures and
Algorithms

Session 11. February 25, 2009

Instructor: Bert Huang
hitp://www.cs.columbia.edu/~bert/courses/3137




Announcements

* Homework 3 is out. Due 3/9

% Midterm review March 9t

% Midterm Exam March 11th

* Manu is stepping down as a TA

* New office hour Priyamvad Tuesday 3-5 PM




Review

* HW1 solutions
* Splay Trees
* Move accessed node to root
* Zig-Zag: double rotate (a la AVL)
* Zig-Zig: reverse order

* Prefix Trees (tries)




loday’s Plan

* Note about HW1 Problem 5
* Visualization of Splay Trees
* Cover Tries at normal pace

* Introduction to Priority Queues




Amortized Running
Time

* In classical analysis, we try to prove:

MT(N) = O(M log N)

* If this is impossible, we can guarantee that M
operations take'

ZT O(M log N)




Prefix Trees (Iries)

* Nicknamed “Trie”, short for retrieval

* Efficiently store objects for fast retrieval via keys
* Usually key is a String

* Basic strategy:

* split into sub-tries based on current letter




Irie Example

* “cat”, “cow”, “dog”, “doberman”, “duck”




Trie Detalls

* Not all words are at leaves
* cat, cataclysm, cataclysmic
* Initially, one letter is enough to uniquely identify

* When a new word is inserted that conflicts, need
to branch

* Originally-uniqgue word must be moved to lower
level




Trie Analysis

* In the worst case, inserting a key of length k or
(looking up) is O(k)

* This is not dependent on N! (surprise, not factorial)

* Much better than log(N) for huge data like
dictionaries

¥ Sometimes we can access words even faster.

* E.g., we can find gwerty uniquely with just “gw”




Priority Queues

* New abstract data type Priority Queue:
* Insert: add node with key

* deleteMin: delete the node with smallest key

* (increase/decrease priority)




Heap Implementation

* Priority queues are most commonly implemented
using Binary Heaps

* Binary tree with special properties

* Heap Structure Property: all nodes are full,
(except possibly one at the bottom level)

* Heap Order Property: any node is smaller than its
children




Array Implementation

* A full tree is regular: we can easily store in an array
* Root at A[1]
* Root’s children at A[2], A[3]
* Node i has children at 2i and (2i+1)
* Parent at floor(i/2)

* No links necessary, so faster (in most languages)




INnsert

* To insert key X, create a hole in bottom level
* Percolate up
* Is hole’s parent is less than X
* If so, put X in hole, heap order satisfied

* If not, swap hole and parent and repeat




DeleteMin

* Save root node, and delete, creating a hole
* Take the last element in the heap X
* Percolate down:
* Check if X is less than hole’s children
* If so, we’re done

* iIf not, swap hole and smallest child and repeat




Assignments

¥ Start/continue HW3

% Read Weiss Section 6.1-6.3




