Data structures in Java

Session 3
Instructor: Bert Huang
http://www1.cs.columbia.edu/~bert/courses/3134
Announcements

• HW1: Collection test function on homepage. Small typo fixed from Saturday (redownload if necessary)

• Due on 9/22 by class time; that is in a little less than 7 days
Review

• Java review
 • Syntax and Java paradigms
 • Classes, encapsulation, hierarchy

• Math review
 • Exponents, logarithms, summations
Today’s Plan

• Algorithm Analysis
• Big-Oh notation
Big-Oh Notation

- We adopt special notation to define **upper bounds** and **lower bounds** on functions.
- In CS, usually the functions we are bounding are running times, memory requirements.
- We will refer to the running time as $T(N)$.
Definitions

• For N greater than some constant, we have the following definitions:

\[
T(N) = O(f(N)) \iff T(N) \leq cf(N)
\]

\[
T(N) = \Omega(g(N)) \iff T(N) \geq cf(N)
\]

\[
T(N) = \Theta(h(N)) \iff \begin{align*}
T(N) &= O(h(N)), \\
T(N) &= \Omega(h(N))
\end{align*}
\]

• There exists some constant c such that $cf(N)$ bounds $T(N)$
Definitions

- Alternately, $O(f(N))$ can be thought of as meaning

 $T(N) = O(f(N)) \iff \lim_{N \to \infty} f(N) \geq \lim_{N \to \infty} T(N)$

- Big-Oh notation is also referred to as asymptotic analysis, for this reason.
Comparing Growth Rates

\[T_1(N) = O(f(N)) \text{ and } T_2(N) = O(g(N)) \]

then

(a) \[T_1(N) + T_2(N) = O(f(N) + g(N)) \]
(b) \[T_1(N)T_2(N) = O(f(N)g(N)) \]

* If you have to, use l’Hôpital’s rule

\[\lim_{N \to \infty} \frac{f(N)}{g(N)} = \lim_{N \to \infty} \frac{f'(N)}{g'(N)} \]
Example: Maximum Subsequence

- Given a sequence of integers (possibly negative), find the subsequence whose sum is the maximum

```
-2  11  -4  13  -5  -2
```

- We’ll look at three algorithms: slow, medium, fast
Naïve Algorithm

1. for $i=1$ to N

 2. for $j=i$ to N

 3. $\text{sum} = 0$

 4. for $k = i$ to j

 5. $\text{sum} = \text{sum} + A[k]$

 6. if ($\text{sum} > \text{maxSum}$)

 7. $\text{maxSum} = \text{sum}$

8. }

9. }

\[
T(N) = \sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=i}^{j} 1
\]

\[
\begin{array}{cccccc}
-2 & 11 & -4 & 13 & -5 & -2 \\
\end{array}
\]
Naïve Algorithm

\[T(N) = \sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=i}^{j} 1 \]

\[T(N) = \sum_{i=1}^{N} \sum_{j=i}^{N} j - i + 1 \]

\[T(N) = \sum_{i=1}^{N} \frac{(N - i + 2)(N - i + 1)}{2} \]

\[T(N) = \frac{N^3 + 3N^2 + 2N}{6} \]
Better Algorithm

- for i=1 to N {
 sum = 0
 for j=i to N {
 sum += A[j]
 if (sum > maxSum)
 maxSum = sum
 }
}

\[
\sum_{i=1}^{N} \sum_{j=i}^{N} 1
\]

\[
\sum_{i=1}^{N} N - i + 1
\]

\[-2 \quad 11 \quad -4 \quad 13 \quad -5 \quad -2\]
Better Algorithm

\[
\sum_{i=1}^{N} N - i + 1
\]

\[
\sum_{i=1}^{N} N - \sum_{i=1}^{N} i + \sum_{i=1}^{N} 1
\]

\[
N^2 - \frac{N(N+1)}{2} + N
\]

\[
\frac{N^2 + N}{2}
\]
Best Algorithm?

- for j=1 to N {
 sum += A[j]
 if (sum > maxSum) maxSum = sum
 else if (sum < 0) sum = 0
}
Logarithmic Running Time

- Rule of thumb: If it takes constant time to reduce the problem size by a fraction, usually $O(\log N)$

- Given integer x and array A, which is sorted, find the index of A that is equal to x (or return failure)

- Use **Binary Search**
Binary Search

- (very simplified for readability)

- BinarySearch(x, A)
 mid = median
 if (x > A[mid])
 BinarySearch(x, A[mid to end])
 else
 BinarySearch(x, A[0 to mid])

-4 -2 0 3 4 6 8 12 16 18 19 20 21 22 30 99
Recurrences

- Sometimes the rule of thumb is insufficient
- Instead, write the running time as a recursive function:
 \[T(N) = c + T(N/2) \]
 \[T(N/2) = c + T(N/4) \]
 \[T(N/4) = c + T(N/8) \]
Recurrences

• Sometimes the rule of thumb is insufficient

• Instead, write the running time as a recursive function:

\[T(N) = c + c + T(N/4) \]

\[T(N/4) = c + T(N/8) \]
Recurrences

- Sometimes the rule of thumb is insufficient
- Instead, write the running time as a recursive function:
 \[T(N) = c + c + c + T(N/8) \]
Recurrences

• Sometimes the rule of thumb is insufficient

• Instead, write the running time as a recursive function:
 \[T(N) = c + c + c + T(N/8) \]

• How many times can this repeat?
 \[T(N) = \sum_{i=1}^{\log N} c \]
 \[T(N) = \Theta(\log N) \]
Empirical Running Time

- Timing algorithms can usually give you a good idea if your big-oh analysis is accurate.
- Average running times can be very different: e.g., Quicksort runs in $N \log N$, but is worst case quadratic.
- Best case inputs can occur too, confusing your analysis.
Today’s class covered Weiss Ch. 2
Thursday’s class will cover Weiss Ch. 3