Data Structures in Java

Session 25
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134
Announcements

• Homework 6 due Monday Dec. 14th.

• Nikhil’s office hours moved from 5-7. Drop off theory homework at office hours.

• Final exam Thursday, Dec. 17th, 4-7 PM, Hamilton 602 (this room)

• same format as midterm (open book/notes)
Review

• A couple topics on data structures in Artificial Intelligence:
 • Game trees
 • Graphical Models
• Final Review (part 1)
Course Topics

- Lists, Stacks, Queues
- General Trees
- Binary Search Trees
 - AVL Trees
 - Splay Trees
- Tries
- Priority Queues (heaps)

- Hash Tables
- Graphs
 - Topological Sort, Shortest Paths, Spanning Tree
- Disjoint Sets
- Sorting Algorithms
- Complexity Classes
- kd-Trees
Hash Table ADT

- Insert or delete objects by **key**
- Search for objects by **key**
- **No** order information whatsoever
- Ideally O(1) per operation
Implementation

- Suppose we have keys between 1 and K
- Create an array with K entries
- Insert, delete, search are just array operations

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
<th>K-3</th>
<th>K-2</th>
<th>K-1</th>
<th>K</th>
</tr>
</thead>
</table>

- Obviously too expensive
Hash Functions

- A hash function maps any key to a valid array position
- Array positions range from 0 to N-1
- Key range possibly unlimited
Hash Functions

- For integer keys, \((\text{key mod N})\) is the simplest hash function
- In general, any function that maps from the space of keys to the space of array indices is valid
- but a good hash function spreads the data out evenly in the array
- A good hash function avoids collisions
Collisions

- A collision is when two distinct keys map to the same array index
- e.g., $h(x) = x \mod 5$
 - $h(7) = 2$, $h(12) = 2$
- Choose $h(x)$ to minimize collisions, but collisions are inevitable
- To implement a hash table, we must decide on collision resolution policy
Collision Resolution

• Two basic strategies
 • Strategy 1: Separate Chaining
 • Strategy 2: Probing; lots of variants
Strategy 1: Separate Chaining

- Keep a list at each array entry
- Insert(x): find h(x), add to list at h(x)
- Delete(x): find h(x), search list at h(x) for x, delete
- Search(x): find h(x), search list at h(x)
Separate Chaining

Average Case

• **Load Factor** \(\lambda = \# \ \text{objects} / \ \text{TableSize} \)

• Average list length is \(\lambda \)

• Time to insert = constant, or constant + \(\lambda \)

• Time to search = constant + \(\lambda \) or constant + \(\lambda/2 \)
Strategy 2: Probing

- If \(h(x) \) is occupied, try \(h(x)+f(i) \mod N \) for \(i = 1 \) until an empty slot is found
- Many ways to choose a good \(f(i) \)
- Simplest method: Linear Probing
 - \(f(i) = i \)
Primary Clustering

• If there are many collisions, blocks of occupied cells form: **primary clustering**

• Any hash value inside the cluster adds to the end of that cluster

• (a) it becomes more likely that the next hash value will collide with the cluster, and (b) collisions in the cluster get more expensive
Quadratic Probing

- \(f(i) = i^2 \)
- Avoids primary clustering
- Sometimes will never find an empty slot even if table isn’t full!
- Luckily, if load factor \(\lambda \leq \frac{1}{2} \),

 guaranteed to find empty slot
Double Hashing

- If \(h_1(x) \) is occupied, probe according to
 \[
 f(i) = i \times h_2(x)
 \]
- 2nd hash function must never map to 0
- Increments differently depending on the key
Hashing

- Indexing by the key needs too much memory
- Index into smaller size array, pray you don’t get collisions
- If collisions occur,
 - separate chaining, lists in array
 - probing, try different array locations
Rehashing

- Like ArrayLists, we have to guess the number of elements we need to insert into a hash table.
- Whatever our collision policy is, the hash table becomes inefficient when load factor is too high.
- To alleviate load, **rehash**:
 - create larger table, scan current table, insert items into new table using new hash function.
Graphs

Trees

Linked Lists
Graphs

Linked List

Tree

Graph
Implementation

• Option 1:
 • Store all nodes in an indexed list
 • Represent edges with adjacency matrix

• Option 2:
 • Explicitly store adjacency lists
Adjacency Matrices

- 2d-array A of boolean variables
- $A[i][j]$ is true when node i is adjacent to node j
- If graph is undirected, A is symmetric

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency Lists

• Each node stores references to its neighbors

1 2 3
2 1 4
3 1 4
4 2 3 5
5 4
Topological Sort

• Problem definition:

 • Given a directed acyclic graph G, order the nodes such that for each edge $(v_i, v_j) \in E$, v_i is before v_j in the ordering.

 • e.g., scheduling errands when some tasks depend on other tasks being completed.
Topological Sort Ex.

- Buy Groceries
- Look up recipe online
- Buy Stamps
- Go to ATM
- Fix Computer
- Taxes
- Cook Dinner
- Mail recipe to Grandma
- Mail Postcard
- Mail Tax Form
- Postcard
- Fix Computer
- Go to ATM
- Buy Stamps
- Buy Groceries
- Cook Dinner
- Mail recipe to Grandma
- Mail Postcard
- Mail Tax Form
Topological Sort
Naïve Algorithm

- **Degree** means # of edges, **indegree** means # of incoming edges
- 1. Compute the **indegree** of all nodes
- 2. Print any node with indegree 0
- 3. Remove the node we just printed. Go to 1.

- Which nodes’ indegrees change?
Topological Sort
Better Algorithm

1. Compute all indegrees
2. Put all indegree 0 nodes into a Collection
3. Print and remove a node from Collection
4. Decrement indegrees of the node’s neighbors.
5. If any neighbor has indegree 0, place in Collection. Go to 3.
Topological Sort

Running time

- Initial indegree computation: $O(|I|E|)$
- Unless we update indegree as we build graph
- $|V|$ nodes must be enqueued/dequeued
- Dequeue requires operation for outgoing edges
- Each edge is used, but never repeated
- Total running time $O(|V| + |E|)$
Shortest Path

• Given $G = (V, E)$, and a node $s \in V$, find the shortest (weighted) path from s to every other vertex in G.

• Motivating example: subway travel
 • Nodes are junctions, transfer locations
 • Edge weights are estimated time of travel
Breadth First Search

- Like a level-order traversal
- Find all adjacent nodes (level 1)
- Find new nodes adjacent to level 1 nodes (level 2)
- ... and so on
- We can implement this with a queue
Unweighted Shortest Path Algorithm

- Set node s’ distance to 0 and enqueue s.
- Then repeat the following:
 - Dequeue node v. For unset neighbor u:
 - set neighbor u’s distance to v’s distance +1
 - mark that we reached v from u
 - enqueue u
Weighted Shortest Path

• The problem becomes more difficult when edges have different weights

• Weights represent different costs on using that edge

• Standard algorithm is Dijkstra’s Algorithm
Dijkstra’s Algorithm

- Keep distance overestimates \(D(v) \) for each node \(v \) (all non-source nodes are initially infinite)
- 1. Choose node \(v \) with smallest unknown distance
- 2. Declare that \(v \)’s shortest distance is known
- 3. Update distance estimates for neighbors
Updating Distances

- For each of v’s neighbors, w,
- if $\min(D(v) + \text{weight}(v,w), D(w))$
- i.e., update $D(w)$ if the path going through v is cheaper than the best path so far to w
Computational Cost

• If the graph is dense, we scan the vertices to find the minimum edge $O(V)$
• This happens $|V|$ times
• We also update the distances once per edge, $O(|E|)$
• Thus, total running time is $O(|E| + |V|^2)$
Computational Cost (sparse)

- Keep a priority queue of all unknown nodes
- Each stage requires a `deleteMin`, and then some `decreaseKeys` (the # of neighbors of node)
- We call `decreaseKey` once per edge, we call `deleteMin` once per vertex
- Both operations are $O(\log |V|)$
- Total cost: $O(|E| \log |V| + |V| \log |V|) = O(|E| \log |V|)$
All Pairs Shortest Path

- Dijkstra’s Algorithm finds shortest paths from one node to all other nodes
- What about computing shortest paths for all pairs of nodes?
- We can run Dijkstra’s |V| times. Total cost: $O(|V|^3)$
- Floyd-Warshall algorithm is often faster in practice (though same asymptotic time)
Recursive Motivation

• Consider the set of numbered nodes 1 through k
• The shortest path between any node i and j using only nodes in the set \{1, ..., k\} is the minimum of
 • shortest path from i to j using nodes \{1, ..., k-1\}
 • shortest path from i to j using node k
• \(\text{dist}(i,j,k) = \min(\text{dist}(i,j,k-1), \text{dist}(i,k,k-1)+\text{dist}(k,j,k-1)) \)
Dynamic Programming

• Instead of repeatedly computing recursive calls, store lookup table.

• To compute $\text{dist}(i,j,k)$ for any i,j, we only need to look up $\text{dist}(-,-, k-1)$
 • but never $k-2$, $k-3$, etc.

• We can incrementally compute the path matrix for $k=0$, then use it to compute for $k=1$, then $k=2$...
Floyd-Warshall Code

- Initialize \(d = \) weight matrix

- for (\(k=0; \ k<N; \ k++ \))
 - for (\(i=0; \ i<N; \ i++ \))
 - for (\(j=0; \ j<N; \ j++ \))
 - if (\(d[i][j] > d[i][k]+d[k][j] \))
 - \(d[i][j] = d[i][k] + d[k][j] \);

- Additionally, we can store the actual path by keeping a “midpoint” matrix
Midpoint Matrix

• We can store the N^2 paths efficiently with a midpoint matrix:

$$\text{path}(i, j) = \text{path}(i, \text{midpoint}[i][j]) + \text{path}(\text{midpoint}[i][j], j)$$

• We only need a $N \times N$ matrix to store all the paths
Transitive Closure

• For any nodes i, j, is there a path from i to j?
• Instead of computing shortest paths, just compute Boolean if a path exists

path(i,j,k) = path(i,j,k-1) OR
 path(i,k,k-1) AND path(k,j,k-1)

• Transitive closure can tell you whether a graph is connected
Minimum Spanning Tree

Problem Definition

• Given connected graph G, find the connected, acyclic subgraph T with minimum edge weight

• A tree that includes every node is called a **spanning tree**

• The method to find the MST is another example of a greedy algorithm
Prim’s Algorithm

- Grow the tree like Dijkstra’s Algorithm
- Dijkstra’s: grow the set of vertices to which we know the shortest path
- Prim’s: grow the set of vertices we have added to the minimum tree
- Store shortest edge $D[]$ from each node to tree
Prim’s Algorithm

• Start with a single node tree, set distance of adjacent nodes to edge weights, infinite elsewhere

• Repeat until all nodes are in tree:
 • Add the node v with shortest known distance
 • Update distances of adjacent nodes w:
 $D[w] = \min(D[w], \text{weight}(v,w))$
Implementation Details

• Store “previous node” like Dijkstra’s Algorithm; backtrack to construct tree after completion

• Of course, use a priority queue to keep track of edge weights. Either
 • keep track of nodes inside heap & decreaseKey
 • or just add a new copy of the node when key decreases, and call deleteMin until you see a node not in the tree
Prim’s Running Time

- Each stage requires one deleteMin $O(\log |V|)$, and there are exactly $|V|$ stages
- We update keys for each edge, updating the key costs $O(\log |V|)$ (either an insert or a decreaseKey)
- Total time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$
Kruskal’s Algorithm

• Somewhat simpler conceptually, but more challenging to implement

• Algorithm: repeatedly add the shortest edge that does not cause a cycle until no such edges exist

• Each added edge performs a union on two trees; perform unions until there is only one tree

• Need special ADT for unions (Disjoint Set)
Kruskal’s Running Time

- First, buildHeap costs $O(|E|)$
- In the worst case, we have to call $|E|$ deleteMins $|E| \leq |V|^2$
- Total running time $O(|E| \log |E|)$; but

$$O(|E| \log |V|^2) = O(2|E| \log |V|) = O(|E| \log |V|)$$
Motivating Example

- One interpretation of Kruskal’s Algorithm:
 - Think of trees as sets of connected nodes
 - Merge sets by connecting nodes
 - Never merge nodes that are in the same set
- Simple idea, but how can we implement it?
Equivalence Classes

• Equivalence class: the set of elements that are all related to each other via an equivalence relation

• Due to transitivity, each member can only be a member of one equivalence class

• Thus, equivalence classes are disjoint sets

• Choose any distinct sets S and T, $S \cap T = \emptyset$
Disjoint Set ADT

- Collection of objects, each in an equivalence class
- **find**(x) returns the class of the object
- **union**(x,y) puts x and y in the same class
 - as well as every other relative of x and y
- Even less information than hash; no keys, no ordering
Data Structure

- Store elements in equivalence (general) trees
- Use the tree’s root as equivalence class label
- **find** returns root of containing tree
- **union** merges tree
- Since all operations only search up the tree, we can store in an array
Implementation

- Index all objects from 0 to N-1
- Store a parent array such that \(s[i] \) is the index of i’s parent
- If \(i \) is a root, store the negative size of its tree*
- **find** follows \(s[i] \) until negative, returns index
- **union**(x,y) points the root of x’s tree to the root of y’s tree
Analysis

- **find** costs the depth of the node
- **union** costs $O(1)$ after **finding** the roots
- Both operations depend on the height of the tree
- Since these are general trees, the trees can be arbitrarily shallow
Union by Size

- Claim: if we union by pointing the smaller tree to the larger tree’s root, the height is at most $\log N$
- Each union increases the depths of nodes in the smaller trees
- Also puts nodes from the smaller tree into a tree at least twice the size
- We can only double the size $\log N$ times
Union by Size Figure

<table>
<thead>
<tr>
<th></th>
<th>0=a</th>
<th>1=b</th>
<th>2=c</th>
<th>3=d</th>
<th>4=e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-5</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Union by Height

• Similar method, attach the tree with less height to the taller tree

• overall height only increases if trees are equal height
Union by Height Figure

<table>
<thead>
<tr>
<th></th>
<th>0=a</th>
<th>1=b</th>
<th>2=c</th>
<th>3=d</th>
<th>4=e</th>
<th>5=f</th>
<th>6=g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>-2</td>
<td>4</td>
</tr>
</tbody>
</table>

1 = b

5
Path Compression

- Even if we have log N tall trees, we can keep calling find on the deepest node repeatedly, costing $O(M \log N)$ for M operations.
- Additionally, we will perform path compression during each find call.
 - Point every node along the find path to root.
Path Compression Figure

<table>
<thead>
<tr>
<th>0=a</th>
<th>1=b</th>
<th>2=c</th>
<th>3=d</th>
<th>4=e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0=a</th>
<th>1=b</th>
<th>2=c</th>
<th>3=d</th>
<th>4=e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>-3</td>
</tr>
</tbody>
</table>
Union by Rank

• Path compression messes up union-by-height because we reduce the height when we compress.
• We could fix the height, but this turns out to gain little, and costs \textbf{find} operations more.
• Instead, rename to \textbf{union by rank}, where \textbf{rank} is just an overestimate of height.
• Since heights change less often than sizes, rank/height is usually the cheaper choice.
Worst Case Bound

- Any sequence of \(M = \Omega(N) \) operations will cost \(O(M \log^* N) \) running time.

- \(\log^* N \) is the number of times the logarithm needs to be applied to \(N \) until the result is \(\leq 1 \).

- So for all realistic intents, each operation is amortized constant time.
Note about Kruskal’s

- With this bound, Kruskal’s algorithm needs N-1 unions, so it should cost almost linear time to perform unions.
- Unfortunately, the algorithm is still dominated by heap deleteMin calls, so asymptotic running time is still $O(E \log V)$.
Sorting

- Given array A of size N, reorder A so its elements are in order.
- "In order" with respect to a consistent comparison function
Radix Sort

• Radix Sort sorts by looking at one digit at a time
• We can start with the least significant digit or the most significant digit
 • least significant digit first provides a stable sort
 • tries use most significant, so let's look at least...
Radix Sort with Least Significant Digit

- BucketSort according to the least significant digit
- Repeat: BucketSort contents of each multi-item bucket according to the next least significant digit
- Running time: $O(Nk)$ for maximum of k digits
- Space: $O(Nk)$
Radix Sort with Least Significant Digit

- CountingSort according to the least significant digit
- Repeat: CountingSort according to the next least significant digit
- Each step must be stable
- Running time: $O(Nk)$ for maximum of k digits
- Space: $O(N+b)$ for base-b number system*
Comparison Sorts

- Of course, Radix Sort only works well for sorting keys representable as digital numbers.
- In general, we must often use comparison sorts.
- We have proven a $\Omega(N \log N)$ lower bound for running time.
- But algorithms also have other desirable characteristics.
Sorting Algorithm Characteristics

- Worst case running time
- Worst case space usage (can it run in place?)
- Stability
- Average running time/space
- (simplicity)
- (Best case running time/space usage)
Preview

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst Case Time</th>
<th>Average Time</th>
<th>Space</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
<td>$O(1)$</td>
<td>No</td>
</tr>
<tr>
<td>Insertion</td>
<td>$O(N^2)$</td>
<td>$O(N^2)$</td>
<td>$O(1)$</td>
<td>Yes</td>
</tr>
<tr>
<td>Shell</td>
<td>$O(N^{3/2})$</td>
<td>?</td>
<td>$O(1)$</td>
<td>No</td>
</tr>
<tr>
<td>Heap</td>
<td>$O(N \log N)$</td>
<td>$O(N \log N)$</td>
<td>$O(1)$</td>
<td>No</td>
</tr>
<tr>
<td>Merge</td>
<td>$O(N \log N)$</td>
<td>$O(N \log N)$</td>
<td>$O(N)/O(1)$</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Quick</td>
<td>$O(N^2)$</td>
<td>$O(N \log N)$</td>
<td>$O(\log N)$</td>
<td>No</td>
</tr>
</tbody>
</table>
Selection Sort

- Swap least unsorted element with first unsorted element
- Unstable if in place
- Running time $O(N^2)$
- In place $O(1)$ space
Selection Sort

<table>
<thead>
<tr>
<th>3</th>
<th>7</th>
<th>5</th>
<th>2</th>
<th>6</th>
<th>1</th>
<th>0</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Insertion Sort

- Assume first p elements are sorted. Insert $(p+1)^{th}$ element into appropriate location.

 - Save $A[p+1]$ in temporary variable t, shift sorted elements greater than t, and insert t

- Stable
- Running time $O(N^2)$
- In place $O(1)$ space
Insertion Sort

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Insertion Sort Analysis

- When the sorted segment is i elements, we may need up to i shifts to insert the next element:

 $$\sum_{i=2}^{N} i = N(N - 1)/2 - 1 = O(N^2)$$

- Stable because elements are visited in order and equal elements are inserted after its equals.
Shellsort

- Essentially splits the array into subarrays and runs Insertion Sort on the subarrays
- Uses an increasing sequence, \(h_1, \ldots, h_t \), such that \(h_1 = 1 \).
- At phase \(k \), all elements \(h_k \) apart are sorted; the array is called \(h_k \)-sorted
- for every \(i \), \(A[i] \leq A[i + h_k] \)
Shell Sort

Correctness

• Efficiency of algorithm depends on that elements sorted at earlier stages remain sorted in later stages

• Unstable. Example: 2-sort the following: [5 5 1]
Increment Sequences

• Shell suggested the sequence $h_t = \lceil N/2 \rceil$ and $h_k = \lfloor h_{k+1}/2 \rfloor$, which was suboptimal

• A better sequence is $h_k = 2^k - 1$

• Using better sequence sorts in $\Theta(N^{3/2})$

• Often used for its simplicity and sub-quadratic time, even though $O(N \log N)$ algorithms exist
Shell Sort I

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>
Shell Sort II
Heapsort

- Build a max heap from the array: $O(N)$
- call deleteMax N times: $O(N \log N)$
- $O(1)$ space
- Simple if we abstract heaps
- Unstable
Mergesort

- Quintessential divide-and-conquer example
- Mergesort each half of the array, merge the results
- Merge by iterating through both halves, compare the current elements, copy lesser of the two into output array
Merge Sort
Mergesort
Recurrence

- Merge operation is costs $O(N)$
- $T(N) = 2 \cdot T(N/2) + N$
- A few ways to solve this recurrence, i.e., visualizing equation as a tree

\[
\begin{align*}
\log N &= \sum_{i=0}^{\log N} 2^i c \frac{N}{2^i} \\
&= \sum_{i=0}^{\log N} cN = cN \log N
\end{align*}
\]
Quicksort

- Choose an element as the **pivot**
- Partition the array into elements greater than pivot and elements less than pivot
- Quicksort each partition
Choosing a Pivot

- The worst case for Quicksort is when the partitions are of size zero and $N-1$
- Ideally, the pivot is the median, so each partition is about half
- If your input is random, you can choose the first element, but this is very bad for presorted input!
- Choosing randomly works, but a better method is...
Median-of-Three

- Choose three entries, use the median as pivot
- If we choose randomly, \(\frac{2}{N} \) probability of worst case pivots
- Median-of-three gives 0 probability of worst case, tiny probability of 2nd-worst case. (Approx. \(\frac{2}{N^3} \))
- Randomness less important, so choosing (first, middle, last) works reasonably well
Partitioning the Array

- Once pivot is chosen, swap pivot to end of array. Start counters $i=1$ and $j=N-1$
- Intuition: i will look at less-than partition, j will look at greater-than partition
- Increment i and decrement j until we find elements that don't belong ($A[i] > \text{pivot}$ or $A[j] < \text{pivot}$)
- When i and j touch, swap pivot with $A[j]$
Quicksort Worst Case

- Running time recurrence includes the cost of partitioning, then the cost of 2 quicksorts
- We don't know the size of the partitions, so let i be the size of the first partition
- $T(N) = T(i) + T(N-i-1) + N$
- Worst case is $T(N) = T(N-1) + N$
Quicksort Properties

- Unstable
- Average time $O(N \log N)$
- Worst case time $O(N^2)$
Quick Sort

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSort Space

• QuickSort is a recursive algorithm

• Each recursive call sorts a segment of the array, it must store the beginning and end of the segment

• When the deepest recursive call is made, between N-1 and log N nested calls have occurred
External Sorting

- So far, we have looked at sorting algorithms when the data is all available in RAM
- Often, the data we want to sort is so large, we can only fit a subset in RAM at any time
- We could run standard sorting algorithms, but then we would be swapping elements to and from disk
- Instead, we want to minimize disk I/O, even if it means more CPU work
MergeSort

• We can speed up external sorting if we have two or more disks (with free space) via Mergesort

• One nice feature of Mergesort is the merging step can be done online with streaming data

• Read as much data as you can, sort, write to disk, repeat for all data, write output to alternating disks

• merge outputs using 4 disks
External Sorting

Disk 3
Disk 2
Disk 1
Disk 0
External Sorting

Disk 0

Disk 1

Disk 2

Disk 3

k 2

k 3
External Sorting
External Sorting
External Sorting
Complexity of Problems

- We’ve been concerned with the complexity of *algorithms*
- It is important to also consider the complexity of *problems*
- Understanding complexity is important for theory, and also for practice
 - understanding the hardness of problems helps us build better algorithms
Complexity Classes

- **P** - solvable in polynomial time
- **NP** - solvable in polynomial time by a nondeterministic computer
 - i.e., you can check a solution in polynomial time
- **NP-complete** - a problem in NP such that any problem in NP is polynomially reducible to it
- **NP-Hard**
- **Undecidable** - no algorithm can solve the problem
Complexity Class Hierarchy

- P?
- P?
- NP
- NP-Complete
- NP-Hard
- Undecidable
NP-Complete Problems

Satisfiability

- Given Boolean expression of N variables, can we set variables to make expression true?
- First NP-Complete proof because Cook’s Theorem gave polynomial time procedure to convert any NP problem to a Boolean expression
- I.e., if we have efficient algorithm for Satisfiability, we can efficiently solve any NP problem
NP-Complete Problems

Graph Coloring

• Given a graph is it possible to color with \(k \) colors all nodes so no adjacent nodes are the same color?

• Coloring countries on a map

• Sudoku is a form of this problem. All squares in a row, column and blocks are connected. \(k = 9 \)
NP-Complete Problems

Hamiltonian Path

- Given a graph with N nodes, is there a path that visits each node exactly once?
NP-Hard Problems
Traveling Salesman

- Closely related to Hamiltonian Path problem
- Given complete graph G, find the shortest path that visits all nodes
- If we are able to solve TSP, we can find a Hamiltonian Path; set connected edge weight to constant, disconnected to infinity
- TSP is NP-hard
Poly. Time Approximation

- Certain optimization NP-Hard problems have **polynomial time approximation schemes (PTAS)**
- An efficient method to find a solution within a constant of the true optimum
 - e.g., Optimal TSP path length $= \ell$
 - PTAS TSP path length $\leq \ell (1 + \epsilon)$
- For fixed constant, must be poly. time, but can scale poorly w.r.t. constant
- E.g., $O(p(N)^{(\frac{1}{\epsilon}!)})$ is a valid PTAS time
Graph Isomorphism Complexity

- The Graph Isomorphism problem is NP,
- but is unknown if NP-Complete/Hard,
- and no poly. time algorithm is known
Given graphs G and H, is there a 1-to-1 mapping of vertices from G to vertices from H that preserves the edge structure?

Subgraph Isomorphism: is a subgraph of G isomorphic to H?
Complexity

- **P**
 - Euler Path, Sorting, Selection, lots of stuff

- **NP**
 - Graph Iso?

- **NP-Complete**
 - Satisfiability, Hamiltonian Path, Subgraph Iso, Graph Coloring, etc.

- **NP-Hard**
 - Traveling Salesman, Halting Problem
kd-Trees

- Useful data structure for data mining and machine learning applications
- Store elements by k-dimensional keys
 - e.g., age, height, weight
- Retrieve elements by ranges in the k dimensions
 - e.g., Searching for a new basketball center 18-24 year olds, 6’6”-7’4”, 200+ lbs
1-d Range Search

- BST recursive search:
 1. if key is in range, print node
 2. if key > lower bound, search left
 3. if key < upper bound, search right

- $O(M + \log N)$ for M items returned
- $O(\log N)$ to find nodes in range
- $O(1)$ at each node

Search for 3-7
kd-Tree Structure

- Binary search tree
- Each level splits on alternating keys
Search Algorithm

- Given lower and upper bounds for each dimension
- If key is in range, print
 If key > current dimension’s lower bound
 search left child
 If key < current dimension’s upper bound
 search right child
- Insert recursion is just like BST
kd-Tree Analysis

• Since each level represents a different keys, balancing is not possible

• If we have all the points, we can build a perfectly balanced tree. How?

• Then worst case $O(M + kN^{1-1/k})$
Nearest Neighbor Search

- kd-trees are especially helpful for finding nearest neighbors.
- Given a data set, find the nearest point to any element x.
- Naive $O(N)$ approach is to compute distances everywhere.
- Instead, kd-tree offers $O(kN^{1-1/k})$.
Nearest Neighbor Algorithm

- Search for x in the kd-tree until you reach a leaf
 - Consider leaf point current-best
- Backtrack along search path, and at each node:
 - If current point is better, redefine current-best
 - If best can be in the unexplored child*, recurse down the unexplored child
Algorithm Illustration
Reading

• pre-midterm: Weiss Ch. 2, 3, 4, 6
• post-midterm: Weiss Ch. 5, 7, 8, 9, 12.6
• See schedule on class website for specific sections (i.e., which to skip)