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Announcements

• Homework 6 due Monday Dec. 14th. 

• Nikhilʼs office hours moved from 5-7. Drop off 
theory homework at office hours.

• Final exam Thursday, Dec. 17th, 4-7 PM, 
Hamilton 602 (this room)

• same format as midterm (open book/notes)



Review

• A couple topics on data structures in 
Artificial Intelligence: 

• Game trees

• Graphical Models

• Final Review (part 1)



Course Topics
• Lists, Stacks, Queues

• General Trees

• Binary Search Trees

• AVL Trees

• Splay Trees

• Tries

• Priority Queues 
(heaps)

• Hash Tables

• Graphs

• Topological Sort, 
Shortest Paths, 
Spanning Tree

• Disjoint Sets

• Sorting Algorithms

• Complexity Classes

• kd-Trees



Hash Table ADT

• Insert or delete objects by key

• Search for objects by key

• No order information whatsoever

• Ideally O(1) per operation



Implementation
• Suppose we have keys between 1 and K

• Create an array with K entries

• Insert, delete, search are just array operations

• Obviously too expensive

1 2 3 4 5 6 ... K-3 K-2 K-1 K



Hash Functions
• A hash function maps any key to a valid 

array position

• Array positions range from 0 to N-1

• Key range possibly unlimited

1 2 3 4 5 6 ... K-3 K-2 K-1 K

0 1 ... N-2 N-1



Hash Functions
• For integer keys, (key mod N) is the simplest hash 

function

• In general, any function that maps from the space 
of keys to the space of array indices is valid

• but a good hash function spreads the data out 
evenly in the array

• A good hash function avoids collisions



Collisions
• A collision is when two distinct keys map to 

the same array index

• e.g., h(x) = x mod 5
        h(7) = 2,  h(12) = 2

• Choose h(x) to minimize collisions, but 
collisions are inevitable

• To implement a hash table, we must decide 
on collision resolution policy



Collision Resolution

• Two basic strategies

• Strategy 1: Separate Chaining

• Strategy 2: Probing; lots of variants



Strategy 1: 
Separate Chaining

• Keep a list at each array entry

• Insert(x): find h(x), add to list at h(x)

• Delete(x): find h(x), search list at h(x) 
for x, delete

• Search(x): find h(x), search list at h(x)



Separate Chaining 
Average Case

• Load Factor       = # objects / TableSize

• Average list length is       

• Time to insert = constant, or constant +      

• Time to search = constant +     or constant + 

λ

λ

λ

λ λ/2



Strategy 2: Probing

• If h(x) is occupied, try  h(x)+f(i) mod N 
for i = 1 until an empty slot is found

• Many ways to choose a good f(i)

• Simplest method: Linear Probing

• f(i) = i



Primary Clustering

• If there are many collisions, blocks of 
occupied cells form: primary clustering

• Any hash value inside the cluster adds to the 
end of that cluster

• (a) it becomes more likely that the next hash 
value will collide with the cluster, and (b) 
collisions in the cluster get more expensive

x x x x x



Quadratic Probing
• f(i) = i^2

• Avoids primary clustering

• Sometimes will never find an empty slot 
even if table isnʼt full!

• Luckily, if load factor            ,  

guaranteed to find empty slot

λ ≤ 1
2



Double Hashing
• If            is occupied, probe according to 

• 2nd hash function must  never map to 0

• Increments differently depending on the 
key

f(i) = i× h2(x)

h1(x)



Hashing
• Indexing by the key needs too much 

memory

• Index into smaller size array, pray you 
donʼt get collisions

• If collisions occur,

• separate chaining, lists in array

• probing, try different array locations



Rehashing
• Like ArrayLists, we have to guess the number of 

elements we need to insert into a hash table

• Whatever our collision policy is, the hash table 
becomes inefficient when load factor is too high.

• To alleviate load, rehash:

• create larger table, scan current table, insert 
items into new table using new hash function



     Graphs    

Trees

Graphs

Linked Lists



Graphs

Linked
List

Tree Graph



Implementation
• Option 1:

• Store all nodes in an indexed list

• Represent edges with adjacency 
matrix

• Option 2:

• Explicitly store adjacency lists



Adjacency Matrices
• 2d-array A of boolean variables

• A[i][j] is true when node i is adjacent to node j

• If graph is undirected, A is symmetric 1

2 3

4

5

1 2 3 4 5

1

2

3

4

5

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0



Adjacency Lists
• Each node stores references to its 

neighbors

1

2 3

4

5

1 2 3

2 1 4

3 1 4

4 2 3 5

5 4



Topological Sort

• Problem definition:

• Given a directed acyclic graph G, order the 
nodes such that for each edge                ,
     is before       in the ordering.

• e.g., scheduling errands when some tasks 
depend on other tasks being completed.

(vi, vj) ∈ E

vi vj



Topological Sort Ex.

Buy 
Groceries

Cook 
Dinner

Taxes
Buy 

Stamps

Mail Tax 
Form

Mail 
Postcard

Go to ATM
Fix 

Computer

Look up 
recipe 
online

Mail recipe 
to 

Grandma



Topological Sort 
Naïve Algorithm

• Degree means # of edges, 
indegree means # of incoming edges

• 1. Compute the indegree of all nodes

• 2. Print any node with indegree 0

• 3. Remove the node we just printed. Go 
to 1.

• Which nodesʼ indegrees change?



Topological Sort
Better Algorithm

• 1. Compute all indegrees

• 2. Put all indegree 0 nodes into a Collection

• 3. Print and remove a node from Collection

• 4. Decrement indegrees of the nodeʼs 
neighbors.

• 5. If any neighbor has indegree 0, place in 
Collection. Go to 3. 



Topological Sort 
Running time

• Initial indegree computation: O(|E|)

• Unless we update indegree as we build 
graph

• |V| nodes must be enqueued/dequeued

• Dequeue requires operation for outgoing 
edges

• Each edge is used, but never repeated

• Total running time O(|V| + |E|)



Shortest Path
• Given G = (V,E), and a node s   V, find 

the shortest (weighted) path from s to 
every other vertex in G.

• Motivating example: subway travel

• Nodes are junctions, transfer locations

• Edge weights are estimated time of 
travel

∈



Breadth First Search
• Like a level-order traversal

• Find all adjacent nodes (level 1)

• Find new nodes adjacent to level 1 
nodes (level 2)

• ... and so on

• We can implement this with a queue



Unweighted Shortest 
Path Algorithm

• Set node sʼ distance to 0 and enqueue s. 

• Then repeat the following:

• Dequeue node v. For unset neighbor u:

• set neighbor uʼs distance to vʼs distance +1

• mark that we reached v from u

• enqueue u



Weighted Shortest 
Path

• The problem becomes more difficult 
when edges have different weights

• Weights represent different costs on 
using that edge

• Standard algorithm is Dijkstraʼs 
Algorithm



Dijkstraʼs Algorithm
• Keep distance overestimates D(v) for each 

node v (all non-source nodes are initially 
infinite)

• 1. Choose node v with smallest unknown 
distance

• 2. Declare that vʼs shortest distance is 
known

• 3. Update distance estimates for neighbors



Updating Distances

• For each of vʼs neighbors, w,

• if min(D(v)+ weight(v,w),  D(w))

• i.e., update D(w) if the path going 
through v is cheaper than the best 
path so far to w



Computational Cost

• If the graph is dense, we scan the 
vertices to find the minimum edge O(V)

• This happens |V| times

• We also update the distances once per 
edge, O(|E|)

• Thus, total running time is O(|E | + |V |2)



Computational Cost 
(sparse)

• Keep a priority queue of all unknown nodes

• Each stage requires a deleteMin, and then some 
decreaseKeys (the # of neighbors of node)

• We call decreaseKey once per edge, we call 
deleteMin once per vertex

• Both operations are O(log |V|)

• Total cost: O(|E| log |V| + |V| log |V|) = O(|E| log |V|)



All Pairs Shortest 
Path

• Dijkstraʼs Algorithm finds shortest paths from one 
node to all other nodes

• What about computing shortest paths for all pairs 
of nodes?

• We can run Dijkstraʼs |V| times. Total cost: 

• Floyd-Warshall algorithm is often faster in 
practice (though same asymptotic time)

O(|V |3)



Recursive Motivation
• Consider the set of numbered nodes 1 through k

• The shortest path between any node i and j using 
only nodes in the set {1, ..., k} is the minimum of

• shortest path from i to j using nodes {1, ..., k-1}

• shortest path from i to j using node k

• dist(i,j,k) = min( dist(i,j,k-1), 
                          dist(i,k,k-1)+dist(k,j,k-1) )



Dynamic Programming

• Instead of repeatedly computing recursive calls, 
store lookup table

• To compute dist(i,j,k) for any i,j, we only need to 
look up dist(-,-, k-1)

• but never k-2, k-3, etc.

• We can incrementally compute the path matrix for 
k=0, then use it to compute for k=1, then k=2...



Floyd-Warshall Code
•Initialize d = weight matrix

•for (k=0; k<N; k++) 
  for (i=0; i<N; i++) 
    for (j=0; j<N; j++) 
      if (d[i][j] > d[i][k]+d[k][j])
        d[i][j] = d[i][k] + d[k][j];

•Additionally, we can store the actual path by 
keeping a “midpoint” matrix



Midpoint Matrix

• We can store the N^2 paths efficiently with a 
midpoint matrix:

path(i,j) = path(i, midpoint[i][j]) +
                path(midpoint[i][j], j)

• We only need a NxN matrix to store all the 
paths



Transitive Closure
• For any nodes i, j, is there a path from i to j? 

• Instead of computing shortest paths, just compute 
Boolean if a path exists

• path(i,j,k) = path(i,j,k-1) OR 
                   path(i,k,k-1) AND path(k,j,k-1)

• Transitive closure can tell you whether a graph is 
connected



Minimum Spanning Tree
Problem Definition

• Given connected graph G, find the 
connected, acyclic subgraph T with 
minimum edge weight

• A tree that includes every node is 
called a spanning tree

• The method to find the MST is another 
example of a greedy algorithm



Primʼs Algorithm
• Grow the tree like Dijkstraʼs Algorithm

• Dijkstraʼs: grow the set of vertices to 
which we know the shortest path

• Primʼs: grow the set of vertices we have 
added to the minimum tree

• Store shortest edge D[ ] from each 
node to tree



Primʼs Algorithm
• Start with a single node tree, set distance of 

adjacent nodes to edge weights, infinite 
elsewhere

• Repeat until all nodes are in tree:

• Add the node v with shortest known 
distance

• Update distances of adjacent nodes w: 
D[w] = min( D[w], weight(v,w))



Implementation 
Details

• Store “previous node” like Dijkstraʼs Algorithm; 
backtrack to construct tree after completion

• Of course, use a priority queue to keep track of 
edge weights. Either

• keep track of nodes inside heap & 
decreaseKey

• or just add a new copy of the node when key 
decreases, and call deleteMin until you see 
a node not in the tree



Primʼs Running Time
• Each stage requires one deleteMin O(log |V|), 

and there are exactly |V| stages

• We update keys for each edge, updating the 
key costs O(log |V|) (either an insert or a 
decreaseKey)

• Total time: 
O(|V| log |V| + |E| log |V|) = O(|E| log |V|)



Kruskalʼs Algorithm
• Somewhat simpler conceptually, but more 

challenging to implement

• Algorithm: repeatedly add the shortest edge that 
does not cause a cycle until no such edges 
exist

• Each added edge performs a union on two 
trees; perform unions until there is only one tree

• Need special ADT for unions 
(Disjoint Set)



Kruskalʼs Running 
Time

• First, buildHeap costs O(|E|)

• In the worst case, we have to call |E| 
deleteMins 

• Total running time O(|E| log |E|); but

|E| ≤| V |2

O(|E| log |V |2) = O(2|E| log |V |) = O(|E| log |V |)



Motivating Example

• One interpretation of Kruskalʼs Algorithm:

• Think of trees as sets of connected nodes

• Merge sets by connecting nodes

• Never merge nodes that are in the same set

• Simple idea, but how can we implement it?



Equivalence Classes
• Equivalence class: the set of elements that are 

all related to each other via an equivalence 
relation

• Due to transitivity, each member can only be a 
member of one equivalence class

• Thus, equivalence classes are disjoint sets

• Choose any distinct sets S and T, S ∩ T = ∅



Disjoint Set ADT
• Collection of objects, each in an equivalence 

class

• find(x) returns the class of the object

• union(x,y) puts x and y in the same class

• as well as every other relative of x and y

• Even less information than hash; no keys, no 
ordering



Data Structure
• Store elements in equivalence (general) trees

• Use the treeʼs root as equivalence class label

• find returns root of containing tree

• union merges tree

• Since all operations only search up the tree, we 
can store in an array



Implementation
• Index all objects from 0 to N-1

• Store a parent array such that s[i] is the index of 
iʼs parent

• If i is a root, store the negative size of its tree*

• find follows s[i] until negative, returns index

• union(x,y) points the root of xʼs tree to the root of 
yʼs tree



Analysis

• find costs the depth of the node 

• union costs O(1) after finding the roots

• Both operations depend on the height 
of the tree

• Since these are general trees, the trees 
can be arbitrarily shallow



Union by Size
• Claim: if we union by pointing the smaller tree to 

the larger treeʼs root, the height is at most log N

• Each union increases the depths of nodes in the 
smaller trees

• Also puts nodes from the smaller tree into a tree 
at least twice the size

• We can only double the size log N times



Union by Size Figure

d

3

b
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1 -5 1 4 1



Union by Height

• Similar method, attach the tree with less 
height to the taller tree

• overall height only increases if trees are 
equal height



Union by Height Figure
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Path Compression
• Even if we have log N tall trees, we can 

keep calling find on the deepest node 
repeatedly, costing O(M log N) for M 
operations

• Additionally, we will perform path 
compression during each find call

• Point every node along the find path 
to root



Path Compression Figure
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Union by Rank
• Path compression messes up union-by-height 

because we reduce the height when we compress

• We could fix the height, but this turns out to gain 
little, and costs find operations more

• Instead, rename to union by rank, where rank is 
just an overestimate of height

• Since heights change less often than sizes, 
rank/height is usually the cheaper choice



Worst Case Bound

• Any sequence of                   operations will cost 
O(M log* N) running time

• log* N is the number of times the logarithm 
needs to be applied to N until the result is 

• So for all realistic intents, each operation is 
amortized constant time

M = Ω(N)

≤ 1



Note about Kruskalʼs

• With this bound, Kruskalʼs algorithm needs 
N-1 unions, so it should cost almost linear 
time to perform unions

• Unfortunately the algorithm is still 
dominated by heap deleteMin calls, so 
asymptotic running time is still O(E log V)



Sorting

• Given array A of size N, reorder A so its 
elements are in order.

• "In order" with respect to a consistent 
comparison function



Radix Sort

• Radix Sort sorts by looking at one digit at a time

• We can start with the least significant digit or the 
most significant digit

• least significant digit first provides a stable sort

• tries use most significant, so let's look at least...



Radix Sort with Least 
Significant Digit

• BucketSort according to the least significant digit

• Repeat: BucketSort contents of each multi-item 
bucket according to the next least significant digit

• Running time: O(Nk) for maximum of k digits

• Space: O(Nk)



Radix Sort with Least 
Significant Digit

• CountingSort according to the least 
significant digit

• Repeat: CountingSort according to the next 
least significant digit

• Each step must be stable

• Running time: O(Nk) for maximum of k digits

• Space: O(N+b) for base-b number system*



Comparison Sorts
• Of course, Radix Sort only works well for 

sorting keys representable as digital numbers

• In general, we must often use comparison sorts

• We have proven a                     lower bound for 
running time

• But algorithms also have other desirable 
characteristics

Ω(N log N)



Sorting Algorithm 
Characteristics

• Worst case running time

• Worst case space usage (can it run in place?)

• Stability

• Average running time/space

• (simplicity)

• (Best case running time/space usage)



Preview
Worst 

Case Time
Average 

Time Space Stable?

Selection

Insertion

Shell

Heap

Merge

Quick

No

Yes

? No

No

Yes/No

No

O(N2) O(N2)

O(N2) O(N2)

O(N2)

O(1)

O(1)

O(1)

O(N)/O(1)

O(N log N)

O(N3/2) O(1)

O(log N)

O(N log N)

O(N log N) O(N log N)

O(N log N)



Selection Sort

• Swap least unsorted element with first 
unsorted element

• Unstable if in place

• Running time

• In place O(1) space
O(N2)



Selection Sort
3 7 5 2 6 1 0 4

0 7 5 2 6 1 3 4

0 1 5 2 6 7 3 4

0 1 2 5 6 7 3 4

0 1 2 3 6 7 5 4

0 1 2 3 4 7 5 6

0 1 2 3 4 5 7 6

0 1 2 3 4 5 6 7



Insertion Sort
• Assume first p elements are sorted. Insert (p+1)'th 

element into appropriate location.

• Save A[p+1] in temporary variable t, shift sorted 
elements greater than t, and insert t

• Stable

• Running time

• In place O(1) space

O(N2)



Insertion Sort
3 7 5 2 6 1 0 4

3 7 5 2 6 1 0 4

3 5 7 2 6 1 0 4

2 3 5 7 6 1 0 4

2 3 5 6 7 1 0 4

1 2 3 5 6 7 0 4

0 1 2 3 5 6 7 4

0 1 2 3 4 5 6 7



Insertion Sort Analysis
• When the sorted segment is i elements, we 

may need up to i shifts to insert the next 
element

• Stable because elements are visited in 
order and equal elements are inserted after 
its equals

N�

i=2

i = N(N − 1)/2− 1 = O(N2)



Shellsort
• Essentially splits the array into subarrays 

and runs Insertion Sort on the subarrays

• Uses an increasing sequence,                , 
such that           . 

• At phase k, all elements       apart are 
sorted; the array is called      -sorted

• for every i, 

h1, . . . , ht

h1 = 1

A[i] ≤ A[i + hk]

hk

hk



Shell Sort 
Correctness

• Efficiency of algorithm depends on that elements 
sorted at earlier stages remain sorted in later 
stages

• Unstable. Example: 2-sort the following: [5 5 1]



Increment 
Sequences

• Shell suggested the sequence 
and                       , which was suboptimal

• A better sequence is 

• Using better sequence sorts in  

• Often used for its simplicity and sub-
quadratic time, even though O(N log N) 
algorithms exist

ht = �N/2�
hk = �hk+1/2�

hk = 2k − 1

Θ(N3/2)



Shell Sort I
3 7 5 2 6 1 0 4

3 7 5 2 6 1 0 4

2 7 5 3 6 1 0 4

0 7 5 2 6 1 3 4

0 6 5 2 7 1 3 4

0 4 5 2 6 1 3 7

0 4 1 2 6 5 3 7



Shell Sort II
0 4 1 2 6 5 3 7

0 1 4 2 6 5 3 7

0 1 2 4 6 5 3 7

0 1 2 4 5 6 3 7

0 1 2 3 4 5 6 7



Heapsort

• Build a max heap from the array: O(N)

• call deleteMax N times: O(N log N)

• O(1) space

• Simple if we abstract heaps

• Unstable



Mergesort
• Quintessential divide-and-conquer 

example

• Mergesort each half of the array, merge 
the results

• Merge by iterating through both halves, 
compare the current elements, copy 
lesser of the two into output array



Merge Sort
3 7 5 2 6 1 0 4

3 7 5 2

3 7 5 2

2 5

2 3 5 7

6 1 0 4

6 1 0 4

1 6

0 1 4 6

0 1 2 3 4 5 6 7



Mergesort 
Recurrence

• Merge operation is costs O(N)

• T(N) = 2 T(N/2) + N

• A few ways to solve this recurrence, 
i.e., visualizing equation as a tree

=
log N�

i=0

2ic
N

2i

=
log N�

i=0

cN = cN log N



Quicksort

• Choose an element as the pivot

• Partition the array into elements greater 
than pivot and elements less than pivot

• Quicksort each partition



Choosing a Pivot
• The worst case for Quicksort is when the 

partitions are of size zero and N-1

• Ideally, the pivot is the median, so each partition 
is about half

• If your input is random, you can choose the first 
element, but this is very bad for presorted input!

• Choosing randomly works, but a better method is...



Median-of-Three
• Choose three entries, use the median as pivot

• If we choose randomly, 2/N probability of worst 
case pivots

• Median-of-three gives 0 probability of worst case, 
tiny probability of 2nd-worst case. (Approx.          )

• Randomness less important, so choosing 
(first, middle, last) works reasonably well

2/N3



Partitioning the Array
• Once pivot is chosen, swap pivot to end of array. 

Start counters i=1 and j=N-1

• Intuition: i will look at less-than partition, j will look 
at greater-than partition

• Increment i and decrement j until we find elements 
that don't belong (A[i] > pivot or A[j] < pivot)

• Swap (A[i], A[j]), continue increment/decrements

• When i and j touch, swap pivot with A[j]



Quicksort Worst Case
• Running time recurrence includes the 

cost of partitioning, then the cost of 2 
quicksorts

• We don't know the size of the partitions, 
so let i be the size of the first partition

• T(N) = T(i)+T(N-i-1) + N

• Worst case is T(N) = T(N-1) + N



Quicksort Properties

• Unstable

• Average time O(N log N)

• Worst case time O(N2)



Quick Sort
3 7 5 2 6 1 0 4

3 7 5 2 6 1 0 4

3 0 5 2 6 1 7 4

3 0 1 2 6 5 7 4

2 0 1 3 6 5 7 4

3 0 5 2 6 1 7 4

0 1 2 3 6 5 7 4

0 1 2 3 6 5 7 4

0 1 2 3 6 5 4 7

0 1 2 3 4 5 6 7



QuickSort Space
• QuickSort is a recursive algorithm

• Each recursive call sorts a segment of 
the array, it must store the beginning 
and end of the segment

• When the deepest recursive call is 
made, between N-1 and log N nested 
calls have occurred



External Sorting
• So far, we have looked at sorting algorithms 

when the data is all available in RAM

• Often, the data we want to sort is so large, we 
can only fit a subset in RAM at any time

• We could run standard sorting algorithms, but 
then we would be swapping elements to and 
from disk

• Instead, we want to minimize disk I/O, even 
if it means more CPU work



MergeSort
• We can speed up external sorting if we have two 

or more disks (with free space) via Mergesort

• One nice feature of Mergesort is the merging 
step can be done online with streaming data

• Read as much data as you can, sort, write to 
disk, repeat for all data, write output to 
alternating disks

• merge outputs using 4 disks



External Sorting

Disk 3

Disk 2

Disk 1

Disk 0



Disk 3

Disk 2

Disk 1

Disk 0

External Sorting



Disk 3

Disk 2

Disk 1

Disk 0

External Sorting



Disk 3

Disk 2

Disk 1

Disk 0

External Sorting



Disk 3

Disk 2

Disk 1

Disk 0

External Sorting



Complexity of 
Problems

• Weʼve been concerned with the complexity 
of algorithms

• It is important to also consider the 
complexity of problems

• Understanding complexity is important for 
theory, and also for practice

• understanding the hardness of problems 
helps us build better algorithms



Complexity Classes
• P - solvable in polynomial time

• NP - solvable in polynomial time by a 
nondeterministic computer

• i.e., you can check a solution in polynomial time

• NP-complete - a problem in NP such that any 
problem in NP is polynomially reducible to it

• NP-Hard 

• Undecidable - no algorithm can solve the problem



P?

Complexity Class 
Hierarchy

P?

NP

Undecidable

NP-Complete

NP-Hard



NP-Complete Problems
Satisfiability

• Given Boolean expression of N variables, can 
we set variables to make expression true?

• First NP-Complete proof because Cookʼs 
Theorem gave polynomial time procedure to 
convert any NP problem to a Boolean 
expression

• I.e., if we have efficient algorithm for 
Satisfiability, we can efficiently solve any NP 
problem



NP-Complete Problems 
Graph Coloring

• Given a graph is it possible to color with 
k colors all nodes so no adjacent nodes 
are the same color?

• Coloring countries on a map

• Sudoku is a form of this problem. All 
squares in a row, column and blocks 
are connected. k = 9



NP-Complete Problems
Hamiltonian Path

• Given a graph with N nodes, is there a 
path that visits each node exactly once?



NP-Hard Problems 
Traveling Salesman

• Closely related to Hamiltonian Path problem

• Given complete graph G, find the shortest 
path that visits all nodes

• If we are able to solve TSP, we can find a 
Hamiltonian Path; set connected edge 
weight to constant, disconnected to infinity

• TSP is NP-hard



Poly. Time 
Approximation

• Certain optimization NP-Hard problems have 
polynomial time approximation schemes (PTAS)

• An efficient method to find a solution within a 
constant of the true optimum

• e.g., Optimal TSP path length = 
        PTAS TSP path length  

• For fixed constant, must be poly. time, but can 
scale poorly w.r.t. constant

• E.g.,                         is a valid PTAS timeO(p(N)(
1
� !))

�
≤ �(1 + �)



Graph Isomorphism 
Complexity

• The Graph Isomorphism problem is NP, 

• but is unknown if NP-Complete/Hard, 

• and no poly. time algorithm is known

NPP NP-Complete               NP-Hard

Graph Isomorphism Subgraph Isomorphism
? ? ?



• Given graphs G and H, is there a 1-to-1 
mapping of vertices from G to vertices from H 
that preserves the edge structure?

• Subgraph Isomorphism: is a subgraph of G 
isomorphic to H?
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Complexity

                     NP      P                       NP-Hard
NP-Complete

Satisfiability, 
Hamiltonian Path,

Subgraph Iso,
Graph Coloring,

 etc.Graph Iso?

Euler Path,
Sorting,

Selection,
lots of stuff

Traveling Salesman,
Halting Problem



kd-Trees
• Useful data structure for data mining and 

machine learning applications

• Store elements by k-dimensional keys

• e.g., age, height, weight

• Retrieve elements by ranges in the k 
dimensions

• e.g., Searching for a new basketball center
        18-24 year olds, 6ʼ6”-7ʼ4”, 200+ lbs



1-d Range Search
• BST recursive search:

(1) if key is in range, print node
(2) if key > lower bound, search left
(3) if key < upper bound, search right

• O(M+log N) for M items returned

• O(log N) to find nodes in range

• O(1) at each node

8

4

2 6

12

10 14

1 3 5 7 9 11 13 15

Search for 3-7



height

weight

age

age

kd-Tree Structure
• Binary search tree

• each level splits on alternating keys



Search Algorithm
• Given lower and upper bounds for each 

dimension

• If key is in range, print
If key > current dimensionʼs lower bound
    search left child
If key < current dimensionʼs upper bound
    search right child

• Insert recursion is just like BST



kd-Tree Analysis

• Since each level represents a different 
keys, balancing is not possible

• If we have all the points, we can build a 
perfectly balanced tree. How?

• Then worst case O(M + kN
1−1/k)



Nearest Neighbor 
Search

• kd-trees are especially helpful for 
finding nearest neighbors

• Given a data set, find the nearest point 
to any element x

• Naive O(N) approach is to compute 
distances everywhere

• Instead, kd-tree offers O(kN1−1/k)



Nearest Neighbor 
Algorithm

• Search for x in the kd-tree until you reach a leaf

• Consider leaf point current-best

• Backtrack along search path, and at each 
node:

• If current point is better, redefine current-best

• If best can be in the unexplored child*, 
recurse down the unexplored child



Algorithm Illustration

age

he
ig

ht A

D

E

FD

A

B C

E F G

x

x

B

G

C



Reading

• pre-midterm: Weiss Ch. 2, 3, 4, 6

• post-midterm: Weiss Ch. 5, 7, 8, 9, 12.6

• See schedule on class website for 
specific sections (i.e., which to skip)


