
Data Structures in
Java
Session 25

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134

Announcements

• Homework 6 due Monday Dec. 14th.

• Nikhilʼs office hours moved from 5-7. Drop off
theory homework at office hours.

• Final exam Thursday, Dec. 17th, 4-7 PM,
Hamilton 602 (this room)

• same format as midterm (open book/notes)

Review

• A couple topics on data structures in
Artificial Intelligence:

• Game trees

• Graphical Models

• Final Review (part 1)

Course Topics
• Lists, Stacks, Queues

• General Trees

• Binary Search Trees

• AVL Trees

• Splay Trees

• Tries

• Priority Queues
(heaps)

• Hash Tables

• Graphs

• Topological Sort,
Shortest Paths,
Spanning Tree

• Disjoint Sets

• Sorting Algorithms

• Complexity Classes

• kd-Trees

Hash Table ADT

• Insert or delete objects by key

• Search for objects by key

• No order information whatsoever

• Ideally O(1) per operation

Implementation
• Suppose we have keys between 1 and K

• Create an array with K entries

• Insert, delete, search are just array operations

• Obviously too expensive

1 2 3 4 5 6 ... K-3 K-2 K-1 K

Hash Functions
• A hash function maps any key to a valid

array position

• Array positions range from 0 to N-1

• Key range possibly unlimited

1 2 3 4 5 6 ... K-3 K-2 K-1 K

0 1 ... N-2 N-1

Hash Functions
• For integer keys, (key mod N) is the simplest hash

function

• In general, any function that maps from the space
of keys to the space of array indices is valid

• but a good hash function spreads the data out
evenly in the array

• A good hash function avoids collisions

Collisions
• A collision is when two distinct keys map to

the same array index

• e.g., h(x) = x mod 5
 h(7) = 2, h(12) = 2

• Choose h(x) to minimize collisions, but
collisions are inevitable

• To implement a hash table, we must decide
on collision resolution policy

Collision Resolution

• Two basic strategies

• Strategy 1: Separate Chaining

• Strategy 2: Probing; lots of variants

Strategy 1:
Separate Chaining

• Keep a list at each array entry

• Insert(x): find h(x), add to list at h(x)

• Delete(x): find h(x), search list at h(x)
for x, delete

• Search(x): find h(x), search list at h(x)

Separate Chaining
Average Case

• Load Factor = # objects / TableSize

• Average list length is

• Time to insert = constant, or constant +

• Time to search = constant + or constant +

λ

λ

λ

λ λ/2

Strategy 2: Probing

• If h(x) is occupied, try h(x)+f(i) mod N
for i = 1 until an empty slot is found

• Many ways to choose a good f(i)

• Simplest method: Linear Probing

• f(i) = i

Primary Clustering

• If there are many collisions, blocks of
occupied cells form: primary clustering

• Any hash value inside the cluster adds to the
end of that cluster

• (a) it becomes more likely that the next hash
value will collide with the cluster, and (b)
collisions in the cluster get more expensive

x x x x x

Quadratic Probing
• f(i) = i^2

• Avoids primary clustering

• Sometimes will never find an empty slot
even if table isnʼt full!

• Luckily, if load factor ,

guaranteed to find empty slot

λ ≤ 1
2

Double Hashing
• If is occupied, probe according to

• 2nd hash function must never map to 0

• Increments differently depending on the
key

f(i) = i× h2(x)

h1(x)

Hashing
• Indexing by the key needs too much

memory

• Index into smaller size array, pray you
donʼt get collisions

• If collisions occur,

• separate chaining, lists in array

• probing, try different array locations

Rehashing
• Like ArrayLists, we have to guess the number of

elements we need to insert into a hash table

• Whatever our collision policy is, the hash table
becomes inefficient when load factor is too high.

• To alleviate load, rehash:

• create larger table, scan current table, insert
items into new table using new hash function

 Graphs

Trees

Graphs

Linked Lists

Graphs

Linked
List

Tree Graph

Implementation
• Option 1:

• Store all nodes in an indexed list

• Represent edges with adjacency
matrix

• Option 2:

• Explicitly store adjacency lists

Adjacency Matrices
• 2d-array A of boolean variables

• A[i][j] is true when node i is adjacent to node j

• If graph is undirected, A is symmetric 1

2 3

4

5

1 2 3 4 5

1

2

3

4

5

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Lists
• Each node stores references to its

neighbors

1

2 3

4

5

1 2 3

2 1 4

3 1 4

4 2 3 5

5 4

Topological Sort

• Problem definition:

• Given a directed acyclic graph G, order the
nodes such that for each edge ,
 is before in the ordering.

• e.g., scheduling errands when some tasks
depend on other tasks being completed.

(vi, vj) ∈ E

vi vj

Topological Sort Ex.

Buy
Groceries

Cook
Dinner

Taxes
Buy

Stamps

Mail Tax
Form

Mail
Postcard

Go to ATM
Fix

Computer

Look up
recipe
online

Mail recipe
to

Grandma

Topological Sort
Naïve Algorithm

• Degree means # of edges,
indegree means # of incoming edges

• 1. Compute the indegree of all nodes

• 2. Print any node with indegree 0

• 3. Remove the node we just printed. Go
to 1.

• Which nodesʼ indegrees change?

Topological Sort
Better Algorithm

• 1. Compute all indegrees

• 2. Put all indegree 0 nodes into a Collection

• 3. Print and remove a node from Collection

• 4. Decrement indegrees of the nodeʼs
neighbors.

• 5. If any neighbor has indegree 0, place in
Collection. Go to 3.

Topological Sort
Running time

• Initial indegree computation: O(|E|)

• Unless we update indegree as we build
graph

• |V| nodes must be enqueued/dequeued

• Dequeue requires operation for outgoing
edges

• Each edge is used, but never repeated

• Total running time O(|V| + |E|)

Shortest Path
• Given G = (V,E), and a node s V, find

the shortest (weighted) path from s to
every other vertex in G.

• Motivating example: subway travel

• Nodes are junctions, transfer locations

• Edge weights are estimated time of
travel

∈

Breadth First Search
• Like a level-order traversal

• Find all adjacent nodes (level 1)

• Find new nodes adjacent to level 1
nodes (level 2)

• ... and so on

• We can implement this with a queue

Unweighted Shortest
Path Algorithm

• Set node sʼ distance to 0 and enqueue s.

• Then repeat the following:

• Dequeue node v. For unset neighbor u:

• set neighbor uʼs distance to vʼs distance +1

• mark that we reached v from u

• enqueue u

Weighted Shortest
Path

• The problem becomes more difficult
when edges have different weights

• Weights represent different costs on
using that edge

• Standard algorithm is Dijkstraʼs
Algorithm

Dijkstraʼs Algorithm
• Keep distance overestimates D(v) for each

node v (all non-source nodes are initially
infinite)

• 1. Choose node v with smallest unknown
distance

• 2. Declare that vʼs shortest distance is
known

• 3. Update distance estimates for neighbors

Updating Distances

• For each of vʼs neighbors, w,

• if min(D(v)+ weight(v,w), D(w))

• i.e., update D(w) if the path going
through v is cheaper than the best
path so far to w

Computational Cost

• If the graph is dense, we scan the
vertices to find the minimum edge O(V)

• This happens |V| times

• We also update the distances once per
edge, O(|E|)

• Thus, total running time is O(|E | + |V |2)

Computational Cost
(sparse)

• Keep a priority queue of all unknown nodes

• Each stage requires a deleteMin, and then some
decreaseKeys (the # of neighbors of node)

• We call decreaseKey once per edge, we call
deleteMin once per vertex

• Both operations are O(log |V|)

• Total cost: O(|E| log |V| + |V| log |V|) = O(|E| log |V|)

All Pairs Shortest
Path

• Dijkstraʼs Algorithm finds shortest paths from one
node to all other nodes

• What about computing shortest paths for all pairs
of nodes?

• We can run Dijkstraʼs |V| times. Total cost:

• Floyd-Warshall algorithm is often faster in
practice (though same asymptotic time)

O(|V |3)

Recursive Motivation
• Consider the set of numbered nodes 1 through k

• The shortest path between any node i and j using
only nodes in the set {1, ..., k} is the minimum of

• shortest path from i to j using nodes {1, ..., k-1}

• shortest path from i to j using node k

• dist(i,j,k) = min(dist(i,j,k-1),
 dist(i,k,k-1)+dist(k,j,k-1))

Dynamic Programming

• Instead of repeatedly computing recursive calls,
store lookup table

• To compute dist(i,j,k) for any i,j, we only need to
look up dist(-,-, k-1)

• but never k-2, k-3, etc.

• We can incrementally compute the path matrix for
k=0, then use it to compute for k=1, then k=2...

Floyd-Warshall Code
•Initialize d = weight matrix

•for (k=0; k<N; k++)
 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 if (d[i][j] > d[i][k]+d[k][j])
 d[i][j] = d[i][k] + d[k][j];

•Additionally, we can store the actual path by
keeping a “midpoint” matrix

Midpoint Matrix

• We can store the N^2 paths efficiently with a
midpoint matrix:

path(i,j) = path(i, midpoint[i][j]) +
 path(midpoint[i][j], j)

• We only need a NxN matrix to store all the
paths

Transitive Closure
• For any nodes i, j, is there a path from i to j?

• Instead of computing shortest paths, just compute
Boolean if a path exists

• path(i,j,k) = path(i,j,k-1) OR
 path(i,k,k-1) AND path(k,j,k-1)

• Transitive closure can tell you whether a graph is
connected

Minimum Spanning Tree
Problem Definition

• Given connected graph G, find the
connected, acyclic subgraph T with
minimum edge weight

• A tree that includes every node is
called a spanning tree

• The method to find the MST is another
example of a greedy algorithm

Primʼs Algorithm
• Grow the tree like Dijkstraʼs Algorithm

• Dijkstraʼs: grow the set of vertices to
which we know the shortest path

• Primʼs: grow the set of vertices we have
added to the minimum tree

• Store shortest edge D[] from each
node to tree

Primʼs Algorithm
• Start with a single node tree, set distance of

adjacent nodes to edge weights, infinite
elsewhere

• Repeat until all nodes are in tree:

• Add the node v with shortest known
distance

• Update distances of adjacent nodes w:
D[w] = min(D[w], weight(v,w))

Implementation
Details

• Store “previous node” like Dijkstraʼs Algorithm;
backtrack to construct tree after completion

• Of course, use a priority queue to keep track of
edge weights. Either

• keep track of nodes inside heap &
decreaseKey

• or just add a new copy of the node when key
decreases, and call deleteMin until you see
a node not in the tree

Primʼs Running Time
• Each stage requires one deleteMin O(log |V|),

and there are exactly |V| stages

• We update keys for each edge, updating the
key costs O(log |V|) (either an insert or a
decreaseKey)

• Total time:
O(|V| log |V| + |E| log |V|) = O(|E| log |V|)

Kruskalʼs Algorithm
• Somewhat simpler conceptually, but more

challenging to implement

• Algorithm: repeatedly add the shortest edge that
does not cause a cycle until no such edges
exist

• Each added edge performs a union on two
trees; perform unions until there is only one tree

• Need special ADT for unions
(Disjoint Set)

Kruskalʼs Running
Time

• First, buildHeap costs O(|E|)

• In the worst case, we have to call |E|
deleteMins

• Total running time O(|E| log |E|); but

|E| ≤| V |2

O(|E| log |V |2) = O(2|E| log |V |) = O(|E| log |V |)

Motivating Example

• One interpretation of Kruskalʼs Algorithm:

• Think of trees as sets of connected nodes

• Merge sets by connecting nodes

• Never merge nodes that are in the same set

• Simple idea, but how can we implement it?

Equivalence Classes
• Equivalence class: the set of elements that are

all related to each other via an equivalence
relation

• Due to transitivity, each member can only be a
member of one equivalence class

• Thus, equivalence classes are disjoint sets

• Choose any distinct sets S and T, S ∩ T = ∅

Disjoint Set ADT
• Collection of objects, each in an equivalence

class

• find(x) returns the class of the object

• union(x,y) puts x and y in the same class

• as well as every other relative of x and y

• Even less information than hash; no keys, no
ordering

Data Structure
• Store elements in equivalence (general) trees

• Use the treeʼs root as equivalence class label

• find returns root of containing tree

• union merges tree

• Since all operations only search up the tree, we
can store in an array

Implementation
• Index all objects from 0 to N-1

• Store a parent array such that s[i] is the index of
iʼs parent

• If i is a root, store the negative size of its tree*

• find follows s[i] until negative, returns index

• union(x,y) points the root of xʼs tree to the root of
yʼs tree

Analysis

• find costs the depth of the node

• union costs O(1) after finding the roots

• Both operations depend on the height
of the tree

• Since these are general trees, the trees
can be arbitrarily shallow

Union by Size
• Claim: if we union by pointing the smaller tree to

the larger treeʼs root, the height is at most log N

• Each union increases the depths of nodes in the
smaller trees

• Also puts nodes from the smaller tree into a tree
at least twice the size

• We can only double the size log N times

Union by Size Figure

d

3

b

2

e

ca

d

3

b

eca

0=a 1=b 2=c 3=d 4=e

1 -3 1 4 -2

0 1 2 3 4

1 -5 1 4 1

Union by Height

• Similar method, attach the tree with less
height to the taller tree

• overall height only increases if trees are
equal height

Union by Height Figure

e

1
b

2
f

ca

gd

eb

2
f

ca gd

0=a 1=b 2=c 3=d 4=e 5=f 6=g

1 -1 1 4 5 -2 4

1=b
5

Path Compression
• Even if we have log N tall trees, we can

keep calling find on the deepest node
repeatedly, costing O(M log N) for M
operations

• Additionally, we will perform path
compression during each find call

• Point every node along the find path
to root

Path Compression Figure

b

d

ca

3

e

b dc

a

3

e

0=a 1=b 2=c 3=d 4=e

1 3 1 4 -3

0=a 1=b 2=c 3=d 4=e

1 4 4 4 -3

Union by Rank
• Path compression messes up union-by-height

because we reduce the height when we compress

• We could fix the height, but this turns out to gain
little, and costs find operations more

• Instead, rename to union by rank, where rank is
just an overestimate of height

• Since heights change less often than sizes,
rank/height is usually the cheaper choice

Worst Case Bound

• Any sequence of operations will cost
O(M log* N) running time

• log* N is the number of times the logarithm
needs to be applied to N until the result is

• So for all realistic intents, each operation is
amortized constant time

M = Ω(N)

≤ 1

Note about Kruskalʼs

• With this bound, Kruskalʼs algorithm needs
N-1 unions, so it should cost almost linear
time to perform unions

• Unfortunately the algorithm is still
dominated by heap deleteMin calls, so
asymptotic running time is still O(E log V)

Sorting

• Given array A of size N, reorder A so its
elements are in order.

• "In order" with respect to a consistent
comparison function

Radix Sort

• Radix Sort sorts by looking at one digit at a time

• We can start with the least significant digit or the
most significant digit

• least significant digit first provides a stable sort

• tries use most significant, so let's look at least...

Radix Sort with Least
Significant Digit

• BucketSort according to the least significant digit

• Repeat: BucketSort contents of each multi-item
bucket according to the next least significant digit

• Running time: O(Nk) for maximum of k digits

• Space: O(Nk)

Radix Sort with Least
Significant Digit

• CountingSort according to the least
significant digit

• Repeat: CountingSort according to the next
least significant digit

• Each step must be stable

• Running time: O(Nk) for maximum of k digits

• Space: O(N+b) for base-b number system*

Comparison Sorts
• Of course, Radix Sort only works well for

sorting keys representable as digital numbers

• In general, we must often use comparison sorts

• We have proven a lower bound for
running time

• But algorithms also have other desirable
characteristics

Ω(N log N)

Sorting Algorithm
Characteristics

• Worst case running time

• Worst case space usage (can it run in place?)

• Stability

• Average running time/space

• (simplicity)

• (Best case running time/space usage)

Preview
Worst

Case Time
Average

Time Space Stable?

Selection

Insertion

Shell

Heap

Merge

Quick

No

Yes

? No

No

Yes/No

No

O(N2) O(N2)

O(N2) O(N2)

O(N2)

O(1)

O(1)

O(1)

O(N)/O(1)

O(N log N)

O(N3/2) O(1)

O(log N)

O(N log N)

O(N log N) O(N log N)

O(N log N)

Selection Sort

• Swap least unsorted element with first
unsorted element

• Unstable if in place

• Running time

• In place O(1) space
O(N2)

Selection Sort
3 7 5 2 6 1 0 4

0 7 5 2 6 1 3 4

0 1 5 2 6 7 3 4

0 1 2 5 6 7 3 4

0 1 2 3 6 7 5 4

0 1 2 3 4 7 5 6

0 1 2 3 4 5 7 6

0 1 2 3 4 5 6 7

Insertion Sort
• Assume first p elements are sorted. Insert (p+1)'th

element into appropriate location.

• Save A[p+1] in temporary variable t, shift sorted
elements greater than t, and insert t

• Stable

• Running time

• In place O(1) space

O(N2)

Insertion Sort
3 7 5 2 6 1 0 4

3 7 5 2 6 1 0 4

3 5 7 2 6 1 0 4

2 3 5 7 6 1 0 4

2 3 5 6 7 1 0 4

1 2 3 5 6 7 0 4

0 1 2 3 5 6 7 4

0 1 2 3 4 5 6 7

Insertion Sort Analysis
• When the sorted segment is i elements, we

may need up to i shifts to insert the next
element

• Stable because elements are visited in
order and equal elements are inserted after
its equals

N�

i=2

i = N(N − 1)/2− 1 = O(N2)

Shellsort
• Essentially splits the array into subarrays

and runs Insertion Sort on the subarrays

• Uses an increasing sequence, ,
such that .

• At phase k, all elements apart are
sorted; the array is called -sorted

• for every i,

h1, . . . , ht

h1 = 1

A[i] ≤ A[i + hk]

hk

hk

Shell Sort
Correctness

• Efficiency of algorithm depends on that elements
sorted at earlier stages remain sorted in later
stages

• Unstable. Example: 2-sort the following: [5 5 1]

Increment
Sequences

• Shell suggested the sequence
and , which was suboptimal

• A better sequence is

• Using better sequence sorts in

• Often used for its simplicity and sub-
quadratic time, even though O(N log N)
algorithms exist

ht = �N/2�
hk = �hk+1/2�

hk = 2k − 1

Θ(N3/2)

Shell Sort I
3 7 5 2 6 1 0 4

3 7 5 2 6 1 0 4

2 7 5 3 6 1 0 4

0 7 5 2 6 1 3 4

0 6 5 2 7 1 3 4

0 4 5 2 6 1 3 7

0 4 1 2 6 5 3 7

Shell Sort II
0 4 1 2 6 5 3 7

0 1 4 2 6 5 3 7

0 1 2 4 6 5 3 7

0 1 2 4 5 6 3 7

0 1 2 3 4 5 6 7

Heapsort

• Build a max heap from the array: O(N)

• call deleteMax N times: O(N log N)

• O(1) space

• Simple if we abstract heaps

• Unstable

Mergesort
• Quintessential divide-and-conquer

example

• Mergesort each half of the array, merge
the results

• Merge by iterating through both halves,
compare the current elements, copy
lesser of the two into output array

Merge Sort
3 7 5 2 6 1 0 4

3 7 5 2

3 7 5 2

2 5

2 3 5 7

6 1 0 4

6 1 0 4

1 6

0 1 4 6

0 1 2 3 4 5 6 7

Mergesort
Recurrence

• Merge operation is costs O(N)

• T(N) = 2 T(N/2) + N

• A few ways to solve this recurrence,
i.e., visualizing equation as a tree

=
log N�

i=0

2ic
N

2i

=
log N�

i=0

cN = cN log N

Quicksort

• Choose an element as the pivot

• Partition the array into elements greater
than pivot and elements less than pivot

• Quicksort each partition

Choosing a Pivot
• The worst case for Quicksort is when the

partitions are of size zero and N-1

• Ideally, the pivot is the median, so each partition
is about half

• If your input is random, you can choose the first
element, but this is very bad for presorted input!

• Choosing randomly works, but a better method is...

Median-of-Three
• Choose three entries, use the median as pivot

• If we choose randomly, 2/N probability of worst
case pivots

• Median-of-three gives 0 probability of worst case,
tiny probability of 2nd-worst case. (Approx.)

• Randomness less important, so choosing
(first, middle, last) works reasonably well

2/N3

Partitioning the Array
• Once pivot is chosen, swap pivot to end of array.

Start counters i=1 and j=N-1

• Intuition: i will look at less-than partition, j will look
at greater-than partition

• Increment i and decrement j until we find elements
that don't belong (A[i] > pivot or A[j] < pivot)

• Swap (A[i], A[j]), continue increment/decrements

• When i and j touch, swap pivot with A[j]

Quicksort Worst Case
• Running time recurrence includes the

cost of partitioning, then the cost of 2
quicksorts

• We don't know the size of the partitions,
so let i be the size of the first partition

• T(N) = T(i)+T(N-i-1) + N

• Worst case is T(N) = T(N-1) + N

Quicksort Properties

• Unstable

• Average time O(N log N)

• Worst case time O(N2)

Quick Sort
3 7 5 2 6 1 0 4

3 7 5 2 6 1 0 4

3 0 5 2 6 1 7 4

3 0 1 2 6 5 7 4

2 0 1 3 6 5 7 4

3 0 5 2 6 1 7 4

0 1 2 3 6 5 7 4

0 1 2 3 6 5 7 4

0 1 2 3 6 5 4 7

0 1 2 3 4 5 6 7

QuickSort Space
• QuickSort is a recursive algorithm

• Each recursive call sorts a segment of
the array, it must store the beginning
and end of the segment

• When the deepest recursive call is
made, between N-1 and log N nested
calls have occurred

External Sorting
• So far, we have looked at sorting algorithms

when the data is all available in RAM

• Often, the data we want to sort is so large, we
can only fit a subset in RAM at any time

• We could run standard sorting algorithms, but
then we would be swapping elements to and
from disk

• Instead, we want to minimize disk I/O, even
if it means more CPU work

MergeSort
• We can speed up external sorting if we have two

or more disks (with free space) via Mergesort

• One nice feature of Mergesort is the merging
step can be done online with streaming data

• Read as much data as you can, sort, write to
disk, repeat for all data, write output to
alternating disks

• merge outputs using 4 disks

External Sorting

Disk 3

Disk 2

Disk 1

Disk 0

Disk 3

Disk 2

Disk 1

Disk 0

External Sorting

Disk 3

Disk 2

Disk 1

Disk 0

External Sorting

Disk 3

Disk 2

Disk 1

Disk 0

External Sorting

Disk 3

Disk 2

Disk 1

Disk 0

External Sorting

Complexity of
Problems

• Weʼve been concerned with the complexity
of algorithms

• It is important to also consider the
complexity of problems

• Understanding complexity is important for
theory, and also for practice

• understanding the hardness of problems
helps us build better algorithms

Complexity Classes
• P - solvable in polynomial time

• NP - solvable in polynomial time by a
nondeterministic computer

• i.e., you can check a solution in polynomial time

• NP-complete - a problem in NP such that any
problem in NP is polynomially reducible to it

• NP-Hard

• Undecidable - no algorithm can solve the problem

P?

Complexity Class
Hierarchy

P?

NP

Undecidable

NP-Complete

NP-Hard

NP-Complete Problems
Satisfiability

• Given Boolean expression of N variables, can
we set variables to make expression true?

• First NP-Complete proof because Cookʼs
Theorem gave polynomial time procedure to
convert any NP problem to a Boolean
expression

• I.e., if we have efficient algorithm for
Satisfiability, we can efficiently solve any NP
problem

NP-Complete Problems
Graph Coloring

• Given a graph is it possible to color with
k colors all nodes so no adjacent nodes
are the same color?

• Coloring countries on a map

• Sudoku is a form of this problem. All
squares in a row, column and blocks
are connected. k = 9

NP-Complete Problems
Hamiltonian Path

• Given a graph with N nodes, is there a
path that visits each node exactly once?

NP-Hard Problems
Traveling Salesman

• Closely related to Hamiltonian Path problem

• Given complete graph G, find the shortest
path that visits all nodes

• If we are able to solve TSP, we can find a
Hamiltonian Path; set connected edge
weight to constant, disconnected to infinity

• TSP is NP-hard

Poly. Time
Approximation

• Certain optimization NP-Hard problems have
polynomial time approximation schemes (PTAS)

• An efficient method to find a solution within a
constant of the true optimum

• e.g., Optimal TSP path length =
 PTAS TSP path length

• For fixed constant, must be poly. time, but can
scale poorly w.r.t. constant

• E.g., is a valid PTAS timeO(p(N)(
1
� !))

�
≤ �(1 + �)

Graph Isomorphism
Complexity

• The Graph Isomorphism problem is NP,

• but is unknown if NP-Complete/Hard,

• and no poly. time algorithm is known

NPP NP-Complete NP-Hard

Graph Isomorphism Subgraph Isomorphism
? ? ?

• Given graphs G and H, is there a 1-to-1
mapping of vertices from G to vertices from H
that preserves the edge structure?

• Subgraph Isomorphism: is a subgraph of G
isomorphic to H?

Y

X

WZ

Graph Isomorphism
Definition

A
C

D

B

B

C

D
A

C

A

DB

X

Complexity

 NP P NP-Hard
NP-Complete

Satisfiability,
Hamiltonian Path,

Subgraph Iso,
Graph Coloring,

 etc.Graph Iso?

Euler Path,
Sorting,

Selection,
lots of stuff

Traveling Salesman,
Halting Problem

kd-Trees
• Useful data structure for data mining and

machine learning applications

• Store elements by k-dimensional keys

• e.g., age, height, weight

• Retrieve elements by ranges in the k
dimensions

• e.g., Searching for a new basketball center
 18-24 year olds, 6ʼ6”-7ʼ4”, 200+ lbs

1-d Range Search
• BST recursive search:

(1) if key is in range, print node
(2) if key > lower bound, search left
(3) if key < upper bound, search right

• O(M+log N) for M items returned

• O(log N) to find nodes in range

• O(1) at each node

8

4

2 6

12

10 14

1 3 5 7 9 11 13 15

Search for 3-7

height

weight

age

age

kd-Tree Structure
• Binary search tree

• each level splits on alternating keys

Search Algorithm
• Given lower and upper bounds for each

dimension

• If key is in range, print
If key > current dimensionʼs lower bound
 search left child
If key < current dimensionʼs upper bound
 search right child

• Insert recursion is just like BST

kd-Tree Analysis

• Since each level represents a different
keys, balancing is not possible

• If we have all the points, we can build a
perfectly balanced tree. How?

• Then worst case O(M + kN
1−1/k)

Nearest Neighbor
Search

• kd-trees are especially helpful for
finding nearest neighbors

• Given a data set, find the nearest point
to any element x

• Naive O(N) approach is to compute
distances everywhere

• Instead, kd-tree offers O(kN1−1/k)

Nearest Neighbor
Algorithm

• Search for x in the kd-tree until you reach a leaf

• Consider leaf point current-best

• Backtrack along search path, and at each
node:

• If current point is better, redefine current-best

• If best can be in the unexplored child*,
recurse down the unexplored child

Algorithm Illustration

age

he
ig

ht A

D

E

FD

A

B C

E F G

x

x

B

G

C

Reading

• pre-midterm: Weiss Ch. 2, 3, 4, 6

• post-midterm: Weiss Ch. 5, 7, 8, 9, 12.6

• See schedule on class website for
specific sections (i.e., which to skip)

