Announcements

• Homework 6 due Dec. 10, last day of class
• Final exam Thursday, Dec. 17th, 4-7 PM, Hamilton 602 (this room)
 • same format as midterm (open book/notes)
Review

- Note about hw4: rehashing order
- Finish discussion of complexity
 - Polynomial Time Approximation Schemes
 - Graph Isomorphism
- k-d trees
Today’s Plan

• A couple topics on data structures in Artificial Intelligence:
 • Game trees
 • Graphical Models
• Final Review (part 1)
Artificial Intelligence

- Sub-field of Computer Science concerned with algorithms that behave *intelligently*
 - or if we're truly ambitious, *optimally*.
- An AI program is commonly called an *agent*
 - which makes decisions based on its *percepts*
A.I. in Games

• AI still needs to simplify the environment for its agents, so games are a nice starting point

• Many board games are turn-based, so we can take some time to compute a good decision at each turn

• Deterministic turn-based games can be represented as game trees
Game Trees

- The root node is the starting state of the game
- Children correspond to possible moves
- If 2-player, every other level is the computer's turn
- The other levels are the adversary's turns
- In a simple game, we can consider/store the whole tree, make decisions based on the subtrees
Partial Tic-Tac-Toe
Game Tree
Tree Strategy

- Thinking about the game as a tree helps organize computational strategy.
- If adversary plays optimally, we can define the optimal strategy via the **minimax** algorithm.
- Assume the adversary will play the optimal move at the next level. Use that result to decide which move is optimal at current level.
Simple Tree

Our Turn

Lose
Win

Result

Win Lose Win Win
Numerical Rewards

Result

-1 +1 +2

Our Turn

+100
Minimax Details

- Depth first search (postorder) to find leaves; propagate information up
- Adversary also assume you will play optimally
- Impossible to store full tree for most games, use heuristic measures
 - e.g., Chess piece values, # controlled squares
- Cut off after a certain level
Pruning

- We can also ignore parts of the tree if we see a subtree that can't possibly be better than one we saw earlier

- This is called **alpha-beta** pruning
 - Figure from wikipedia article on alpha-beta pruning
Search

• Some puzzles can be thought of as trees too
• 15-puzzle, Rubik's Cube, Sudoku
• Discrete moves move from current state to children states
• A.I. wants to find the solution state efficiently
Simple Idea

• Breadth first search; level-order
 • Try every move from current state
 • Try 2 moves from current state
 • Try 3 moves from current state
 • ...

Another Idea

• Depth first search
 • Try a move
 • Try another move...
• If we get stuck, backtrack
Heuristic Search

• The main problem is without any knowledge, we are guessing arbitrarily

• Instead, design a heuristic and choose the next state to try according to heuristic

• e.g., # of tiles in the correct location, distance from maze goal
Probabilistic Inference

- Some of these decisions are too hard to compute exactly, and often there is insufficient information to make an exact decision.

- Instead, model uncertainty via probability.

- An important application for graph theory is using graphs to represent probabilistic independence.
Independent Coins

1. Suppose I flip a coin twice, what is the probability of both flips landing heads?

2. Compare to if we flip a coin, and if it lands heads, we flip a second coin. What is the probability of two heads?

In Scenario 1, we can reason with less computation by taking advantage of independence.
A Simple Bayesian Network

- Cloudy
- Rain
- Construction
- Subway runs
Inference Rules of Thumb

- Trees and DAGs are easier to reason
 - We can use similar strategy to Topological sort:
 - Only compute probability once all incoming neighbors have been computed
 - Cyclic graphs are difficult; NP-hard in some settings
About the Final

- Theory only (no programming)
- Bring your book and notes
- No electronic devices
- Covers both halves of the semester, mostly 2nd half.
Course Topics

• Lists, Stacks, Queues
• General Trees
• Binary Search Trees
 • AVL Trees
 • Splay Trees
• Tries
• Priority Queues (heaps)

• Hash Tables
• Graphs
• Topological Sort, Shortest Paths, Spanning Tree
• Disjoint Sets
• Sorting Algorithms
• Complexity Classes
• kd-Trees
Definitions

- For N greater than some constant, we have the following definitions:

 \[T(N) = O(f(N)) \iff T(N) \leq cf(N) \]

 \[T(N) = \Omega(g(N)) \iff T(N) \geq cg(N) \]

 \[T(N) = \Theta(h(N)) \iff T(N) = O(h(N)) \quad \text{and} \quad T(N) = \Omega(h(N)) \]

- There exists some constant c such that $cf(N)$ bounds $T(N)$
Abstract Data Type: Lists

- An ordered series of objects
- Each object has a previous and next
 - Except first has no prev., last has no next
- We can insert an object (at location k)
- We can remove an object (at location k)
- We can read an object from (location k)
List Methods

- Insert object (at index)
- Delete by index
- Get by index
Stack Definition

• Essentially a restricted List
• Two (main) operations:
 • Push(AnyType x)
 • Pop()
• Analogy – Cafeteria Trays, PEZ
Stack
Implementations

- Linked List:
 - Push(x) <-> add(x) <-> add(x,0)
 - Pop() <-> remove(0)

- Array:
 - Push(x) <-> Array[k] = x; k = k+1;
 - Pop() <-> k = k-1; return Array[k]
Queue ADT

- Stacks are **Last In First Out**
- Queues are **First In First Out**, first-come first-served
- Operations: **enqueue** and **dequeue**
- Analogy: standing in line, garden hose, etc
Queue Implementation

- Linked List
 - $add(x, 0)$ to enqueue, $remove(N-1)$ to dequeue

- Array List won’t work well!
 - $add(x, 0)$ is expensive

- Solution: use a circular array
Circular Array

- Don’t shift after removing from array list
- Keep track of start and end of queue
- When run out of space, wrap around; modular arithmetic
- When array is full, increase size using list tactic
Tree Implementation

- Many possible implementations
- One approach: each node stores a list of children

```java
public class TreeNode<T> {
    T Data;
    Collection<TreeNode<T>> myChildren;
}
```
Tree Traversals

- Suppose we want to print all nodes in a tree
- What order should we visit the nodes?
 - **Preorder** - read the parent before its children
 - **Postorder** - read the parent after its children
Preorder vs. Postorder

- // parent before children
 preorder(node x)
 print(x)
 for child : myChildren
 preorder(child)

- // parent after children
 postorder(node x)
 for child : myChildren
 postorder(child)
 print(x)
Binary Trees

- Nodes can only have two children:
 - left child and right child
- Simplifies implementation and logic
- public class BinaryNode<T> {
 T element;
 BinaryNode<T> left;
 BinaryNode<T> right;
}
- Provides new inorder traversal
Inorder Traversal

- Read left child, then parent, then right child
- Essentially scans *whole* tree from left to right
- inorder(node x)
 inorder(x.left)
 print(x)
 inorder(x.right)
Search (Tree) ADT

- ADT that allows insertion, removal, and searching by **key**
 - A **key** is a value that can be compared
 - In Java, we use the **Comparable** interface
 - Comparison must obey transitive property
- Search ADT doesn’t use any index
Binary Search Tree

- Binary Search Tree Property:
 Keys in left subtree are less than root.
 Keys in right subtree are greater than root.

- BST property holds for all subtrees of a BST
• Compare new value to current node, if greater, insert into right subtree, if lesser, insert into left subtree

• `insert(x, Node t)`
 - if `(t == null)` return new Node(x)
 - if `(x > t.key)`, then `t.right = insert(x, t.right)`
 - if `(x < t.key)`, then `t.left = insert(x, t.left)`
 - return t
Searching a BST

• `findMin(t)` // return left-most node

 if \((t.left == null)\) return \(t.key\)
 else return `findMin(t.left)`

• `search(x,t)` // similar to insert

 if \((t == null)\) return `false`
 if \((x == t.key)\) return `true`
 if \((x > t.key)\), then return `search(x, t.right)`
 if \((x < t.key)\), then return `search(x, t.left)`
Deleting from a BST

- Removing a leaf is easy, removing a node with one child is also easy.
- Nodes with no grandchildren are easy.
- What about nodes with grandchildren?
A Removal Strategy

• First, find node to be removed, t
• Replace with the smallest node from the right subtree
 • $a = \text{findMin}(t.\text{right});$
 • $t.\text{key} = a.\text{key};$
• Then delete original smallest node in right subtree
 remove($a.\text{key}, t.\text{right}$)
AVL Trees

• Motivation: want height of tree to be close to log N

• AVL Tree Property:
 For each node, all keys in its left subtree are less than the node’s and all keys in its right subtree are greater.

 Furthermore, the height of the left and right subtrees differ by at most 1
AVL Tree Visual
Tree Rotations

- To balance the tree after an insertion violates the AVL property,
 - rearrange the tree; make a new node the root.
 - This rearrangement is called a rotation.
- There are 2 types of rotations.
AVL Tree Visual: Before insert
AVL Tree Visual: After insert
AVL Tree
Single Rotation

- Works when new node is added to outer subtree (left-left or right-right)
- What about inner subtrees? (left-right or right-left)
AVL Tree Visual: Before Insert 2
AVL Tree Visual: After Insert 2
AVL Tree Visual: Double Rotation
AVL Tree Visual: Double Rotation
Splay Trees

- Like AVL trees, use the standard binary search tree property
- After any operation on a node, make that node the new root of the tree
- Make the node the root by repeating one of two moves that make the tree more spread out
Easy cases

- If node is root, do nothing
- If node is child of root, do single AVL rotation
- Otherwise, node has a grandparent, and there are two cases
Case 1: zig-zag

- Use when the node is the right child of a left child (or left-right)
- Double rotate, just like AVL tree
Case 2: zig-zig

• We can’t use the single-rotation strategy like AVL trees

• Instead we use a different process, and we’ll compare this to single-rotation
Case 2: zig-zig

- Use when node is the right-right child (or left-left)
- Reverse the order of grandparent->parent->node
 - Make it node->parent->grandparent
Priority Queues

- New abstract data type Priority Queue
- Insert: add node with key
- deleteMin: delete the node with smallest key
- findMin: access the node with smallest key
- (increase/decrease priority)
Heap Implementation

- Binary tree with special properties
- Heap Structure Property: all nodes are full*
- Heap Order Property: any node is smaller than its children
Array Implementation

- A full tree is regular: we can store in an array
 - Root at A[1]
 - Node i has children at 2i and (2i+1)
 - Parent at floor(i/2)
- No links necessary, so much faster (but only constant speedup)
Insert

- To insert key X, create a hole in bottom level

- **Percolate up**
 - Is hole’s parent is less than X
 - If so, put X in hole, heap order satisfied
 - If not, swap hole and parent and repeat
DeleteMin

- Save root node, and delete, creating a hole
- Take the last element in the heap X
- **Percolate down**:
 - is X is less than hole’s children?
 - if so, we’re done
 - if not, swap hole and smallest child and repeat
buildHeap

- Start at deepest non-leaf node
- in array, this is node N/2
- **percolateDown** on all nodes in reverse level-order
- for i = N/2 to 1
 - percolateDown(i)
Heap Operations

- Insert – $O(\log N)$
- deleteMin – $O(\log N)$
- change key – $O(\log N)$
- buildHeap – $O(N)$
Reading

- pre-midterm: Weiss Ch. 2, 3, 4, 6
- post-midterm: Weiss Ch. 5, 7, 8, 9, 12.6
- See schedule on class website for specific sections (i.e., which to skip)