
Data Structures in
Java
Session 23

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134

Announcements
• Homework 6 due Dec. 10, last day of class

• Final exam Thursday, Dec. 17th, 4-7 PM, Hamilton
602 (this room)

• same format as midterm (open book/notes)

• Distinguished Lecture: Barbara Liskov, MIT.
Turing Award Winner 2009.
11 AM Monday. Davis Auditorium, CEPSR/Schapiro

Review
• External sorting: merge to alternating disks

• Complexity Classes

• P, NP: Euler path

• NP-Complete, NP-Hard: Hamiltonian
path, Satisfiability, Graph Coloring

• NP-Hard: Traveling Salesman

• Undecidable: Halting Problem

Todayʼs Plan

• Note about hw4

• Finish discussion of complexity

• Polynomial Time Approximation Schemes

• Graph Isomorphism

• k-d trees

Rehashing

• A hash table does not store the input order

• When rehashing, elements are inserted
into the new table in the array order

• No penalty on homework, but make sure
itʼs correct on the final

NP-Hardness
• An algorithm for an NP-Hard problem

can be used to solve any NP problem
via polynomial time conversion

• But we donʼt know algorithms to solve
NP-Hard problems in poly. time

• If we did, P = NP, so most conjecture
that NP-Hard problems must be
intractable

Poly. Time
Approximation

• Certain optimization NP-Hard problems have
polynomial time approximation schemes (PTAS)

• An efficient method to find a solution within a
constant of the true optimum

• e.g., Optimal TSP path length =
 PTAS TSP path length

• For fixed constant, must be poly. time, but can
scale poorly w.r.t. constant

• E.g., is a valid PTAS timeO(p(N)(
1
� !))

�
≤ �(1 + �)

Graph Isomorphism
Complexity

• The Graph Isomorphism problem is NP,

• but is unknown if NP-Complete/Hard,

• and no poly. time algorithm is known

NPP NP-Complete NP-Hard

Graph Isomorphism Subgraph Isomorphism
? ? ?

• Given graphs G and H, is there a 1-to-1
mapping of vertices from G to vertices from H
that preserves the edge structure?

• Subgraph Isomorphism: is a subgraph of G
isomorphic to H?

Y

X

WZ

Graph Isomorphism
Definition

A
C

D

B

B

C

D
A

C

A

DB

X

Complexity

 NP P NP-Hard
NP-Complete

Satisfiability,
Hamiltonian Path,

Subgraph Iso,
Graph Coloring,

 etc.Graph Iso?

Euler Path,
Sorting,

Selection,
lots of stuff

Traveling Salesman,
Halting Problem

Advanced Data
Structures

• Weʼve mostly studied fundamental data
structures

• wide application areas, very general

• In practice, youʼll often have more
specific goals, and thus need to design
your own data structures

kd-Trees
• Useful data structure for data mining and

machine learning applications

• Store elements by k-dimensional keys

• e.g., age, height, weight

• Retrieve elements by ranges in the k
dimensions

• e.g., Searching for a new basketball center
 18-24 year olds, 6ʼ6”-7ʼ4”, 200+ lbs

1-d Range Search
• BST recursive search:

(1) if key is in range, print node
(2) if key > lower bound, search left
(3) if key < upper bound, search right

• O(M+log N) for M items returned

• O(log N) to find nodes in range

• O(1) at each node

8

4

2 6

12

10 14

1 3 5 7 9 11 13 15

Search for 3-7

height

weight

age

age

kd-Tree Structure
• Binary search tree

• each level splits on alternating keys

Search Algorithm
• Given lower and upper bounds for each

dimension

• If key is in range, print
If key > current dimensionʼs lower bound
 search left child
If key < current dimensionʼs upper bound
 search right child

• Insert recursion is just like BST

A

BC

E D

F

G

H

2-d Tree

age

he
ig

ht

A

B
C

D

E

F

G
H

kd-Tree Analysis

• Since each level represents a different
keys, balancing is not possible

• If we have all the points, we can build a
perfectly balanced tree. How?

• Then worst case O(M + kN
1−1/k)

Square Root vs. Log

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

log
sqrt

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

log
sqrt
N

Nearest Neighbor
Search

• kd-trees are especially helpful for
finding nearest neighbors

• Given a data set, find the nearest point
to any element x

• Naive O(N) approach is to compute
distances everywhere

• Instead, kd-tree offers O(kN1−1/k)

Nearest Neighbor
Algorithm

• Search for x in the kd-tree until you reach a leaf

• Consider leaf point current-best

• Backtrack along search path, and at each
node:

• If current point is better, redefine current-best

• If best can be in the unexplored child*,
recurse down the unexplored child

Algorithm Illustration

age

he
ig

ht A

D

E

FD

A

B C

E F G

x

x

B

G

C

kd-Tree Summary
• Smart data structure for storing and searching

multi-dimensional keys

• Branch BST cycling dimensions at each level

• Running time is sub-linear, but grows to linear
when k is infinite

• Efficient range search, search, and nearest-
neighbor search

Reading

• Complexity - Weiss 9.7

• kd-trees - Weiss 12.6

