
Data structures in Java
Session 2

Instructor: Bert Huang
http://www1.cs.columbia.edu/~bert/courses/3134

Announcements

• Nikhil’s office hours: Friday 10 AM-12 PM
 Monday 2 PM-4PM

• Clarification for HW1: Collection test function
should allow user manipulation; write a simple
prompt

• Homework 1 is due on 9/22 by class time; that is in
a little less than 12 days

Today’s Plan

• Java review

• Some slides with general info

• Live demo using CUNIX and emacs

• Math review

Java Syntax Basics

• You can write comments via C style
/* The compiler ignores this */

or double slashes // this is ignored

• System.out.print("Hello World");
System.out.println("Hello World");

• Strings can be added, numbers automatically
converted:
System.out.println("Pi is "+Math.PI);

Objected Oriented
Programming

• Java is an object oriented programming language

• Even the programs themselves are objects that
manipulate other smaller objects

• Objects are classified into classes, which exist in
a hierarchy of inheritance

• Furthermore, similar classes have
polymorphism

Objected Oriented
Programming

• Java is an object oriented programming language

• Even the programs themselves are objects that
manipulate other smaller objects

• Objects are classified into classes, which exist in
a hierarchy of inheritance

• Furthermore, similar classes have
polymorphism

Number

Integer Double

Classes

• A class is a type of object. It has

• methods, which are the functions available for
objects of this class

• data members, which contain the information
used by the class

• The class and its components can be either public
or private

Encapsulation

• Preserve abstraction in your code

• Anything that doesn't need to be public should be
private

• Limit what a user of your class can do so those
limited features are secure, robust, well-tested

Primitives vs. Objects

• Primitives: int, boolean, double, long...

• primitives are passed by value

• Objects: Integer, Boolean, Double, String, Scanner,
LinkedList, Collection, any class we write...

• Objects are passed by reference.

Working with Objects

• After declaring a variable that represents an object,
you must also instantiate the object
Integer myNumber = new Integer();

• Variables start out as NULL

• new creates an instance in memory

• The variable name refers to the instance

Exceptions
• Java has built in support for handling errors by

using exception objects

• Exceptions are thrown and catch'd, (caught?) e.g.,

try {
 SomethingDangerous();
} catch (Exception error) {
 System.out.println("Something went wrong:
 +error);

}

Common Modifiers

• static - value is the same for all objects of this
class. Static methods and variables can be used
without instantiating (e.g., main)

• final - value cannot be changed; useful for setting
constants

• abstract - used on a class if some methods are
unimplemented; means they must be implemented
in a subclass

Generics

• We want our data structures to be very general, but
Java typically wants all variables to have a type

• The old way to get around this is to cast the object
as an Object

• Since Java 5, we can now use generics

•public class Collection<MyType>

Generics continued

•public class Collection<MyType>

• Collection<Integer> foo = new
 Collection<Integer>();

• Now foo must always work with Integers, even
though the class Collection is written without
specifying a type.

Warning:
Generics Arrays

• MyType[] A = new MyType[N];

 // doesn't work!

Generic array declarations are not allowed exactly
(because Java is stupid*)

• Instead, instantiate an array of Objects, and cast it
as a generic. For example, an array A of N MyType
objects is:

MyType[] A = (MyType[]) new Object[N];

*Java is not stupid

CUNIX Demo

Math Background:
Exponents

XAXB = XA+B

XA

XB
= XA−B

�
XA

�B
= XAB

XN + XN = 2XN �= X2N

2N + 2N = 2N+1

Math Background:
Logarithms

XA = B iff logX B = A

logA B =
logC B

logC A
; A, B,C > 0, A �= 1

log AB = log A + log B; A, B > 0

Math Background:
Series

N�

i=0

2i = 2N+1 − 1

N�

i=0

Ai =
AN+1 − 1

A− 1
N�

i=1

i =
N(N + 1)

2
� N2

2

N�

i=1

i2 =
N(N + 1)(2N + 1)

6
≈ N3

3

Math Background:
Proofs

• Proof by Induction:

• Prove base case,

• Inductive hypothesis. Prove claim for current state
assuming truth in previous state

• Proof by Contradiction: assume claim is false.

• Show that assumption leads to contradiction

Reading

• We covered today material in Weiss Ch. 1 - 2.1

• For Tuesday, the rest of Weiss Ch. 2

