Data Structures In
Java

Session 19
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134




Announcements

e Homework 5 due 11/24




Review

e Minimum Spanning Tree
e Prim’s algorithm: similar to Dijkstra
e Kruskal's algorithm

e Disjoint Set ADT




Today’s Plan

e Review Disjoint Set ADT
e Start Discussion of Sorting
e | ower bound

e Breaking the lower bound




Analysis

find costs the depth of the node
union costs O(1) after finding the roots

Both operations depend on the height
of the tree

Since these are general trees, the trees
can be arbitrarily shallow




Union by Size

e Claim: if we union by pointing the smaller tree to
the larger tree’s root, the height is at most log N

e Each union increases the depths of nodes in the
smaller trees

e Also puts nodes from the smaller tree into a tree
at least twice the size

e \We can only double the size log N times




Union by Size Figure




Union by Height

e Similar method, attach the tree with less
height to the taller tree

e overall height only increases if trees are
equal height




Union by Height Figure




Union by Height proof

e Induction: tree of height h has at least 2" nodes

e |etT be tree of height h with least nodes possible
via union operations

e At last union, T must have had height h-1, because
otherwise, it would have been a smaller tree of
height h

e Since the height was updated, T unioned with
another tree of height h-1, each had at least 2"
nodes resulting in at least 2" nodes for T




Path Compression

e Fven if we have log N tall trees, we can
keep calling find on the deepest node
repeatedly, costing O(M log N) for M
operations

e Additionally, we will perform path
compression during each find call

e Point every node along the find path
to root




Path Compression Figure

L e
adogoflo




Union by Rank

Path compression messes up union-by-height
because we reduce the height when we compress

We could fix the height, but this turns out to gain
little, and costs find operations more

Instead, rename to union by rank, where rank is
just an overestimate of height

Since heights change less often than sizes,
rank/height is usually the cheaper choice




Worst Case Bound

* Any sequence of M = Q(N) operations will cost
O(M log* N) running time

e |og* N is the number of times the logarithm
needs to be applied to N until the resultis <1

e So for all realistic intents, each operation is
amortized constant time




Note about Kruskal’s

e With this bound, Kruskal’s algorithm needs
N-1 unions, so it should cost almost linear
time to perform unions

e Unfortunately the algorithm is still
dominated by heap deleteMin calls, so
asymptotic running time is still O(E log V)




Sorting

e (GGiven array A of size N, reorder A so its
elements are in order.

e "In order" with respect to a consistent
comparison function




The Bad News

e Sorting algorithms typically compare two
elements and branch according to the result of
comparison

e Theorem: An algorithm that branches from the
result of pairwise comparisons must use
Q(Nlog N) operations to sort worst-case input

e Proof. Consider the decision tree




Comparison Sort
Decision Tree: N=2

e Each node in this decision tree represents a
state

e Move to child states after any branch

e Consider the possible orderings at each state

b>a b>a

a>b
b>a

2>b a>b




Decisi

cision Iree

a>c a>b> > : N=3
—

a>b
c>




Lower Bound Proof

e The worst case is the deepest leaf; the height

e Lemma 7.1: Let T be a binary tree of depth d.
Then T has at most 2¢ leaves

e Proof. By induction.
Base case: d =0, one leaf

e Otherwise, we have root and left/right

subtrees of depth at most d-1. Each has at
most 297! leaves




Lower Bound Proof

e Llemma 7.1: Let T be a binary tree of depth
d. Then T has at most 2¢ leaves

e | emma 7.2: Abinary tree with L leaves
must have [height] at least [log L]

e Theorem proof. There are N! leaves in the
binary decision tree for sorting. Therefore,
the deepest node is at depth log(N!)




Lower Bound Proof

log(N!)

og(N(N = 1)(N —1)...(2)(1))
og N+ log(N — 1)+ log(N —2)+ ...+ log2 + log1

> log N+ log(N — 1) + log(N — 2) + ... + log(N/2)
> N lo N
= 2080
N N
> —logN — —
= 2 %N

Q(Nlog N)




Comparison Sort
Lower Bound

e Decision tree analysis provides nice
mechanism for lower bound

e However, the bound only allows
pairwise comparisons.

e We've already learned a data structure
that beats the bound

e What is it?




Trie Running Time

Insert items into trie then preorder traversal
Each insert costs O(k), for length of word k
N inserts cost O(NKk)

Preorder traversal costs O(Nk), because
the worst case trie has each word as a leaf
of a disjoint path of length k

e This is a very degenerate case




Counting Sort

Another simple sort for integer inputs

1. Treat integers as array indices (subtract min)
2. Insert items into array indices

3. Read array in order, skipping empty entries

4. Laugh at comparison sort algorithms




Bucket Sort

Like Counting Sort, but less wasteful in space
Split the input space into k buckets
Put input items into appropriate buckets

Sort the buckets using favorite sorting algorithm




Radix Sort

e TrieSort and CountingSort are forms of Radix Sort
e Radix Sort sorts by looking at one digit at a time

¢ We can start with the least significant digit or the
most significant digit

¢ |east significant digit first provides a stable sort

¢ tries use most significant, so let's look at least...




Radix Sort with Least
Significant Digit

BucketSort according to the least significant digit

Repeat: BucketSort contents of each multi-item
bucket according to the next least significant digit

Running time: O(Nk) for maximum of k digits
Space: O(Nk)




Comparison Sorting

e Nevertheless, comparison-based
sorting is much more general

e Well-studied problem, lots of different
algorithms with various tradeoffs

e \We’'ll examine some of the famous
algorithms




Reading

e Disj. Sets:
Weiss Ch. 8 (skim proof in 8.6)

e Sorting:
Weiss Section 7.8 (lower bound)
Rest of Section 7 for next two classes




