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Announcements

• Homework 5 due 11/24



Review

• Minimum Spanning Tree

• Primʼs algorithm: similar to Dijkstra

• Kruskalʼs algorithm

• Disjoint Set ADT



Todayʼs Plan

• Review Disjoint Set ADT

• Start Discussion of Sorting

• Lower bound

• Breaking the lower bound



Analysis

• find costs the depth of the node 

• union costs O(1) after finding the roots

• Both operations depend on the height 
of the tree

• Since these are general trees, the trees 
can be arbitrarily shallow



Union by Size
• Claim: if we union by pointing the smaller tree to 

the larger treeʼs root, the height is at most log N

• Each union increases the depths of nodes in the 
smaller trees

• Also puts nodes from the smaller tree into a tree 
at least twice the size

• We can only double the size log N times



Union by Size Figure
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Union by Height

• Similar method, attach the tree with less 
height to the taller tree

• overall height only increases if trees are 
equal height



Union by Height Figure
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Union by Height proof
• Induction: tree of height h has at least      nodes

• Let T be tree of height h with least nodes possible 
via union operations

• At last union, T must have had height h-1, because 
otherwise, it would have been a smaller tree of 
height h

• Since the height was updated, T unioned with 
another tree of height h-1, each had at least           
nodes resulting in at least      nodes for T

2h

2h−1

2h



Path Compression
• Even if we have log N tall trees, we can 

keep calling find on the deepest node 
repeatedly, costing O(M log N) for M 
operations

• Additionally, we will perform path 
compression during each find call

• Point every node along the find path 
to root



Path Compression Figure
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Union by Rank
• Path compression messes up union-by-height 

because we reduce the height when we compress

• We could fix the height, but this turns out to gain 
little, and costs find operations more

• Instead, rename to union by rank, where rank is 
just an overestimate of height

• Since heights change less often than sizes, 
rank/height is usually the cheaper choice



Worst Case Bound

• Any sequence of                   operations will cost 
O(M log* N) running time

• log* N is the number of times the logarithm 
needs to be applied to N until the result is 

• So for all realistic intents, each operation is 
amortized constant time

M = Ω(N)

≤ 1



Note about Kruskalʼs

• With this bound, Kruskalʼs algorithm needs 
N-1 unions, so it should cost almost linear 
time to perform unions

• Unfortunately the algorithm is still 
dominated by heap deleteMin calls, so 
asymptotic running time is still O(E log V)



Sorting

• Given array A of size N, reorder A so its 
elements are in order.

• "In order" with respect to a consistent 
comparison function



The Bad News
• Sorting algorithms typically compare two 

elements and branch according to the result of 
comparison

• Theorem: An algorithm that branches from the 
result of pairwise comparisons must use                  
                 operations to sort worst-case input

• Proof. Consider the decision tree
Ω(N log N)



Comparison Sort 
Decision Tree: N=2

• Each node in this decision tree represents a 
state

• Move to child states after any branch

• Consider the possible orderings at each state
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b>a

a>b

b>a

a>b



b>a>c
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b>c

c>b
c>b>a

Decision Tree: N=3

a>b>c
a>c>b
b>a>c
b>c>a
c>a>b
c>b>a

a>b>c
a>c>b
c>a>b

b>a>c
b>c>a
c>b>a

b>a

a>b

a>b>c
a>c>b

a>c

c>a
c>a>b

a>c

c>a

b>a>c

b>c>a

a>b>c

a>c>b

b>c

c>b



Lower Bound Proof
• The worst case is the deepest leaf; the height

• Lemma 7.1: Let T be a binary tree of depth d. 
Then T has at most       leaves

• Proof. By induction.  
Base case: d = 0, one leaf

• Otherwise, we have root and left/right 
subtrees of depth at most d-1. Each has at 
most            leaves

2d

2d−1



Lower Bound Proof
• Lemma 7.1: Let T be a binary tree of depth 

d. Then T has at most       leaves

• Lemma 7.2: A binary tree with L leaves 
must have [height] at least 

• Theorem proof. There are N! leaves in the 
binary decision tree for sorting. Therefore, 
the deepest node is at depth 

2d

�log L�

log(N !)



Lower Bound Proof
log(N !)

= log(N(N − 1)(N − 1) ... (2)(1))

= log N + log(N − 1) + log(N − 2) + ... + log 2 + log 1

≥ log N + log(N − 1) + log(N − 2) + ... + log(N/2)

≥ N

2
log

N

2

≥ N

2
log N − N

2
= Ω(N log N)



Comparison Sort 
Lower Bound

• Decision tree analysis provides nice 
mechanism for lower bound

• However, the bound only allows 
pairwise comparisons. 

• We've already learned a data structure 
that beats the bound

• What is it?



Trie Running Time
• Insert items into trie then preorder traversal

• Each insert costs O(k), for length of word k

• N inserts cost O(Nk)

• Preorder traversal costs O(Nk), because 
the worst case trie has each word as a leaf 
of a disjoint path of length k

• This is a very degenerate case



Counting Sort

• Another simple sort for integer inputs

• 1. Treat integers as array indices (subtract min)

• 2. Insert items into array indices

• 3. Read array in order, skipping empty entries

• 4. Laugh at comparison sort algorithms



Bucket Sort

• Like Counting Sort, but less wasteful in space

• Split the input space into k buckets

• Put input items into appropriate buckets

• Sort the buckets using favorite sorting algorithm



Radix Sort
• TrieSort and CountingSort are forms of Radix Sort

• Radix Sort sorts by looking at one digit at a time

• We can start with the least significant digit or the 
most significant digit

• least significant digit first provides a stable sort

• tries use most significant, so let's look at least...



Radix Sort with Least 
Significant Digit

• BucketSort according to the least significant digit

• Repeat: BucketSort contents of each multi-item 
bucket according to the next least significant digit

• Running time: O(Nk) for maximum of k digits

• Space: O(Nk)



Comparison Sorting

• Nevertheless, comparison-based 
sorting is much more general

• Well-studied problem, lots of different 
algorithms with various tradeoffs

• Weʼll examine some of the famous 
algorithms



Reading

• Disj. Sets: 
Weiss Ch. 8 (skim proof in 8.6)

• Sorting:
Weiss Section 7.8 (lower bound)
Rest of Section 7 for next two classes


