
Data Structures in
Java
Session 19

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134

Announcements

• Homework 5 due 11/24

Review

• Minimum Spanning Tree

• Primʼs algorithm: similar to Dijkstra

• Kruskalʼs algorithm

• Disjoint Set ADT

Todayʼs Plan

• Review Disjoint Set ADT

• Start Discussion of Sorting

• Lower bound

• Breaking the lower bound

Analysis

• find costs the depth of the node

• union costs O(1) after finding the roots

• Both operations depend on the height
of the tree

• Since these are general trees, the trees
can be arbitrarily shallow

Union by Size
• Claim: if we union by pointing the smaller tree to

the larger treeʼs root, the height is at most log N

• Each union increases the depths of nodes in the
smaller trees

• Also puts nodes from the smaller tree into a tree
at least twice the size

• We can only double the size log N times

Union by Size Figure

d

3

b

2

e

ca

d

3

b

eca

0=a 1=b 2=c 3=d 4=e

1 -3 1 4 -2

0 1 2 3 4

1 -5 1 4 1

Union by Height

• Similar method, attach the tree with less
height to the taller tree

• overall height only increases if trees are
equal height

Union by Height Figure

e

1
b

2
f

ca

gd

eb

2
f

ca gd

0=a 1=b 2=c 3=d 4=e 5=f 6=g

1 -1 1 4 5 -2 4

1=b
5

Union by Height proof
• Induction: tree of height h has at least nodes

• Let T be tree of height h with least nodes possible
via union operations

• At last union, T must have had height h-1, because
otherwise, it would have been a smaller tree of
height h

• Since the height was updated, T unioned with
another tree of height h-1, each had at least
nodes resulting in at least nodes for T

2h

2h−1

2h

Path Compression
• Even if we have log N tall trees, we can

keep calling find on the deepest node
repeatedly, costing O(M log N) for M
operations

• Additionally, we will perform path
compression during each find call

• Point every node along the find path
to root

Path Compression Figure

b

d

ca

3

e

b dc

a

3

e

0=a 1=b 2=c 3=d 4=e

1 3 1 4 -3

0=a 1=b 2=c 3=d 4=e

1 4 4 4 -3

Union by Rank
• Path compression messes up union-by-height

because we reduce the height when we compress

• We could fix the height, but this turns out to gain
little, and costs find operations more

• Instead, rename to union by rank, where rank is
just an overestimate of height

• Since heights change less often than sizes,
rank/height is usually the cheaper choice

Worst Case Bound

• Any sequence of operations will cost
O(M log* N) running time

• log* N is the number of times the logarithm
needs to be applied to N until the result is

• So for all realistic intents, each operation is
amortized constant time

M = Ω(N)

≤ 1

Note about Kruskalʼs

• With this bound, Kruskalʼs algorithm needs
N-1 unions, so it should cost almost linear
time to perform unions

• Unfortunately the algorithm is still
dominated by heap deleteMin calls, so
asymptotic running time is still O(E log V)

Sorting

• Given array A of size N, reorder A so its
elements are in order.

• "In order" with respect to a consistent
comparison function

The Bad News
• Sorting algorithms typically compare two

elements and branch according to the result of
comparison

• Theorem: An algorithm that branches from the
result of pairwise comparisons must use
 operations to sort worst-case input

• Proof. Consider the decision tree
Ω(N log N)

Comparison Sort
Decision Tree: N=2

• Each node in this decision tree represents a
state

• Move to child states after any branch

• Consider the possible orderings at each state

a>b
b>a

b>a

a>b

b>a

a>b

b>a>c
b>c>a

b>c

c>b
c>b>a

Decision Tree: N=3

a>b>c
a>c>b
b>a>c
b>c>a
c>a>b
c>b>a

a>b>c
a>c>b
c>a>b

b>a>c
b>c>a
c>b>a

b>a

a>b

a>b>c
a>c>b

a>c

c>a
c>a>b

a>c

c>a

b>a>c

b>c>a

a>b>c

a>c>b

b>c

c>b

Lower Bound Proof
• The worst case is the deepest leaf; the height

• Lemma 7.1: Let T be a binary tree of depth d.
Then T has at most leaves

• Proof. By induction.
Base case: d = 0, one leaf

• Otherwise, we have root and left/right
subtrees of depth at most d-1. Each has at
most leaves

2d

2d−1

Lower Bound Proof
• Lemma 7.1: Let T be a binary tree of depth

d. Then T has at most leaves

• Lemma 7.2: A binary tree with L leaves
must have [height] at least

• Theorem proof. There are N! leaves in the
binary decision tree for sorting. Therefore,
the deepest node is at depth

2d

�log L�

log(N !)

Lower Bound Proof
log(N !)

= log(N(N − 1)(N − 1) ... (2)(1))

= log N + log(N − 1) + log(N − 2) + ... + log 2 + log 1

≥ log N + log(N − 1) + log(N − 2) + ... + log(N/2)

≥ N

2
log

N

2

≥ N

2
log N − N

2
= Ω(N log N)

Comparison Sort
Lower Bound

• Decision tree analysis provides nice
mechanism for lower bound

• However, the bound only allows
pairwise comparisons.

• We've already learned a data structure
that beats the bound

• What is it?

Trie Running Time
• Insert items into trie then preorder traversal

• Each insert costs O(k), for length of word k

• N inserts cost O(Nk)

• Preorder traversal costs O(Nk), because
the worst case trie has each word as a leaf
of a disjoint path of length k

• This is a very degenerate case

Counting Sort

• Another simple sort for integer inputs

• 1. Treat integers as array indices (subtract min)

• 2. Insert items into array indices

• 3. Read array in order, skipping empty entries

• 4. Laugh at comparison sort algorithms

Bucket Sort

• Like Counting Sort, but less wasteful in space

• Split the input space into k buckets

• Put input items into appropriate buckets

• Sort the buckets using favorite sorting algorithm

Radix Sort
• TrieSort and CountingSort are forms of Radix Sort

• Radix Sort sorts by looking at one digit at a time

• We can start with the least significant digit or the
most significant digit

• least significant digit first provides a stable sort

• tries use most significant, so let's look at least...

Radix Sort with Least
Significant Digit

• BucketSort according to the least significant digit

• Repeat: BucketSort contents of each multi-item
bucket according to the next least significant digit

• Running time: O(Nk) for maximum of k digits

• Space: O(Nk)

Comparison Sorting

• Nevertheless, comparison-based
sorting is much more general

• Well-studied problem, lots of different
algorithms with various tradeoffs

• Weʼll examine some of the famous
algorithms

Reading

• Disj. Sets:
Weiss Ch. 8 (skim proof in 8.6)

• Sorting:
Weiss Section 7.8 (lower bound)
Rest of Section 7 for next two classes

