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Announcements

• Homework 4 due

• Homework 5 posted, due 11/24

• Graph theory problems

• Programming: All-pairs shortest path



Review

• Shortest Path algorithms

• Breadth first search

• Dijkstraʼs Algorithm

• All-Pairs Shortest Path



Todayʼs Plan

• Minimum Spanning Tree

• Primʼs Algorithm

• Kruskalʼs Algorithm

• Depth first search

• Euler Paths



Minimum Spanning Tree
Problem definition

• Given connected graph G, find the 
connected, acyclic subgraph T with 
minimum edge weight

• A tree that includes every node is 
called a spanning tree

• The method to find the MST is another 
example of a greedy algorithm



Motivation for Greed

• Consider any spanning tree

• Adding another edge to the tree 
creates exactly one cycle

• Removing an edge from that cycle 
restores the tree structure



Primʼs Algorithm
• Grow the tree like Dijkstraʼs Algorithm

• Dijkstraʼs: grow the set of vertices to 
which we know the shortest path

• Primʼs: grow the set of vertices we have 
added to the minimum tree

• Store shortest edge D[ ] from each 
node to tree



Primʼs Algorithm
• Start with a single node tree, set distance of 

adjacent nodes to edge weights, infinite 
elsewhere

• Repeat until all nodes are in tree:

• Add the node v with shortest known 
distance

• Update distances of adjacent nodes w: 
D[w] = min( D[w], weight(v,w))



Implementation 
Details

• Store “previous node” like Dijkstraʼs Algorithm; 
backtrack to construct tree after completion

• Of course, use a priority queue to keep track of 
edge weights. Either

• keep track of nodes inside heap & 
decreaseKey

• or just add a new copy of the node when key 
decreases, and call deleteMin until you see 
a node not in the tree



Primʼs Algorithm 
Justification

• At any point, we can consider the set of 
nodes in the tree T and the set outside the 
tree Q 

• Whatever the MST structure of the nodes in 
Q, at least one edge must connect the MSTs 
of T and Q

• The greedy edge is just as good structurally 
as any other edge, and has minimum weight



Primʼs Running Time
• Each stage requires one deleteMin O

(log |V|), and there are exactly |V| 
stages

• We update keys for each edge, 
updating the key costs O(log |V|) (either 
an insert or a decreaseKey)

• Total time: O(|V| log |V| + |E| log |V|) = 
O(|E| log |V|)



Kruskalʼs Algorithm
• Somewhat simpler conceptually, but more 

challenging to implement

• Algorithm: repeatedly add the shortest edge that 
does not cause a cycle until no such edges 
exist

• Each added edge performs a union on two 
trees; perform unions until there is only one tree

• Need special ADT for unions 
(Disjoint Set)



Kruskalʼs Justification
• At each stage, the greedy edge e connects two 

nodes v and w

• Eventually those two nodes must be 
connected;

• we must add an edge to connect trees 
including v and w

• We can always use e to connect v and w, 
which must have less weight since it's the 
greedy choice



Kruskalʼs Running 
Time

• First, buildHeap costs O(|E|)

• Each edge, need to check if it creates a 
cycle (costs O(log V))

• In the worst case, we have to call |E| 
deleteMins 

• Total running time O(|E| log |E|); but

|E| ≤| V |2

O(|E| log |V |2) = O(2|E| log |V |) = O(|E| log |V |)



MST Summary

• Connect all nodes in graph using minimum 
weight tree

• Two greedy algorithms:

• Primʼs: similar to Dijkstraʼs. Easier to code

• Kruskalʼs: easy on paper



Disjoint Sets



Motivating Example

• One interpretation of Kruskalʼs Algorithm:

• Think of trees as sets of connected nodes

• Merge sets by connecting nodes

• Never merge nodes that are in the same set

• Simple idea, but how can we implement it?



Equivalence 
Relations

• An equivalence relation is a relation operator 
that observes three properties:

• Reflexive: (a R a), for all a 

• Symmetric: (a R b)  if and only if  (b R a)

• Transitive: (a R b) and (b R c) implies (a R c)

• Put another way, equivalence relations check if 
operands are in the same equivalence class



Equivalence Classes
• Equivalence class: the set of elements that are 

all related to each other via an equivalence 
relation

• Due to transitivity, each member can only be a 
member of one equivalence class

• Thus, equivalence classes are disjoint sets

• Choose any distinct sets S and T, S ∩ T = ∅



Disjoint Set ADT
• Collection of objects, each in an equivalence 

class

• find(x) returns the class of the object

• union(x,y) puts x and y in the same class

• as well as every other relative of x and y

• Even less information than hash; no keys, no 
ordering



Implementation 
Observations

• One simple implementation would be to store the 
class label for each element in an array

• O(1) lookup for find, O(N) for union

• If we store equivalent elements in linked lists, we 
avoid scanning the whole set during union

• We can change the labels of the smaller class



Data Structure
• Store elements in equivalence (general) trees

• Use the treeʼs root as equivalence class label

• find returns root of containing tree

• union merges tree

• Since all operations only search up the tree, we 
can store in an array



Implementation
• Index all objects from 0 to N-1

• Store a parent array such that s[i] is the index of 
iʼs parent

• If i is a root, store the negative size of its tree*

• find follows s[i] until negative, returns index

• union(x,y) points the root of xʼs tree to the root of 
yʼs tree



Analysis

• find costs the depth of the node 

• union costs O(1) after finding the roots

• Both operations depend on the height 
of the tree

• Since these are general trees, the trees 
can be arbitrarily shallow



Union by Size
• Claim: if we union by pointing the smaller tree to 

the larger treeʼs root, the height is at most log N

• Each union increases the depths of nodes in the 
smaller trees

• Also puts nodes from the smaller tree into a tree 
at least twice the size

• We can only double the size log N times



Union by Size Figure
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Union by Height

• Similar method, attach the tree with less 
height to the taller tree

• Shorter treeʼs nodes join a tree at least 
twice the height, overall height only 
increases if trees are equal height



Union by Height 
Figure
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Union by Height proof
• Induction: tree of height h has at least      nodes

• Let T be tree of height h with least nodes possible 
via union operations

• At last union, T must have had height h-1, because 
otherwise, it would have been a smaller tree of 
height h

• Since the height was updated, T unioned with 
another tree of height h-1, each had at least           
nodes resulting in at least      nodes for T

2h

2h−1

2h



Path Compression
• Even if we have log N tall trees, we can 

keep calling find on the deepest node 
repeatedly, costing O(M log N) for M 
operations

• Additionally, we will perform path 
compression during each find call

• Point every node along the find path 
to root



Path Compression 
Figure
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Union by Rank
• Path compression messes up union-by-height 

because we reduce the height when we compress

• We could fix the height, but this turns out to gain 
little, and costs find operations more

• Instead, rename to union by rank, where rank is 
just an overestimate of height

• Since heights change less often than sizes, 
rank/height is usually the cheaper choice



Worst Case Bound 
• The algorithms described have been proven to 

have worst case 
where     is the inverse of Ackermannʼs function:

•

•

Θ(Mα(M,N))
α

A(1, j) = 2j

A(i, 1) = A(i− 1, 2)
A(i, j) = A(i− 1, A(i, j − 1))

α(M,N) = min{i ≥ 1|A(i, �M/N�) > log N}



Worst Case Bound
• A slightly looser, but easier to prove/understand 

bound is that any sequence of 
operations will cost O(M log* N) running time

• log* N is the number of times the logarithm 
needs to be applied to N until the result is 

• e.g., log*(65536) = 4 because 
log(log(log(log(65536)))) = 1

M = Ω(N)

≤ 1



Log* Plots
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Log* Steps
N
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Note about Kruskalʼs

• With this bound, Kruskalʼs algorithm needs 
N-1 unions, so it should cost almost linear 
time to perform unions

• Unfortunately the algorithm is still 
dominated by heap deleteMin calls, so 
asymptotic running time is still O(E log V)



Reading

• Weiss 9.5 (MST)

• Weiss 8.1-8.5 (Disjoint Sets)


