Data Structures in Java

Session 18
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134
Announcements

• Homework 4 due
• Homework 5 posted, due 11/24
 • Graph theory problems
• Programming: All-pairs shortest path
Review

- Shortest Path algorithms
- Breadth first search
- Dijkstra’s Algorithm
- All-Pairs Shortest Path
Today’s Plan

• Minimum Spanning Tree
 • Prim’s Algorithm
 • Kruskal’s Algorithm
• Depth first search
 • Euler Paths
Minimum Spanning Tree

Problem definition

- Given connected graph G, find the connected, acyclic subgraph T with minimum edge weight
- A tree that includes every node is called a spanning tree
- The method to find the MST is another example of a greedy algorithm
Motivation for Greed

- Consider any spanning tree
- Adding another edge to the tree creates exactly one cycle
- Removing an edge from that cycle restores the tree structure
Prim’s Algorithm

- Grow the tree like Dijkstra’s Algorithm
- Dijkstra’s: grow the set of vertices to which we know the shortest path
- Prim’s: grow the set of vertices we have added to the minimum tree
- Store shortest edge $D[]$ from each node to tree
Prim’s Algorithm

• Start with a single node tree, set distance of adjacent nodes to edge weights, infinite elsewhere

• Repeat until all nodes are in tree:
 • Add the node v with shortest known distance
 • Update distances of adjacent nodes w: $D[w] = \min(D[w], \text{weight}(v,w))$
Implementation Details

- Store “previous node” like Dijkstra’s Algorithm; backtrack to construct tree after completion
- Of course, use a priority queue to keep track of edge weights. Either
 - keep track of nodes inside heap & decreaseKey
 - or just add a new copy of the node when key decreases, and call deleteMin until you see a node not in the tree
Prim’s Algorithm

Justification

• At any point, we can consider the set of nodes in the tree T and the set outside the tree Q

• Whatever the MST structure of the nodes in Q, at least one edge must connect the MSTs of T and Q

• The greedy edge is just as good structurally as any other edge, and has minimum weight
Prim’s Running Time

- Each stage requires one deleteMin $O(\log |V|)$, and there are exactly $|V|$ stages
- We update keys for each edge, updating the key costs $O(\log |V|)$ (either an insert or a decreaseKey)
- Total time: $O(|V| \log |V| + |E| \log |V|) = O(|E| \log |V|)$
Kruskal’s Algorithm

• Somewhat simpler conceptually, but more challenging to implement

• Algorithm: repeatedly add the shortest edge that does not cause a cycle until no such edges exist

• Each added edge performs a union on two trees; perform unions until there is only one tree

• Need special ADT for unions (Disjoint Set)
Kruskal’s Justification

- At each stage, the greedy edge e connects two nodes v and w
- Eventually those two nodes must be connected;
 - we must add an edge to connect trees including v and w
- We can always use e to connect v and w, which must have less weight since it's the greedy choice
Kruskal’s Running Time

- First, buildHeap costs $O(|E|)$
- Each edge, need to check if it creates a cycle (costs $O(\log V)$)
- In the worst case, we have to call $|E|$ deleteMins $|E| \leq |V|^2$
- Total running time $O(|E| \log |E|)$; but

\[O(|E| \log |V|^2) = O(2|E| \log |V|) = O(|E| \log |V|) \]
MST Summary

- Connect all nodes in graph using minimum weight tree
- Two greedy algorithms:
 - Prim’s: similar to Dijkstra’s. Easier to code
 - Kruskal’s: easy on paper
Disjoint Sets
Motivating Example

- One interpretation of Kruskal’s Algorithm:
 - Think of trees as sets of connected nodes
 - Merge sets by connecting nodes
 - Never merge nodes that are in the same set
- Simple idea, but how can we implement it?
Equivalence Relations

• An equivalence relation is a relation operator that observes three properties:

 • **Reflexive**: \((a \ R \ a)\), for all \(a\)

 • **Symmetric**: \((a \ R \ b)\) if and only if \((b \ R \ a)\)

 • **Transitive**: \((a \ R \ b)\) and \((b \ R \ c)\) implies \((a \ R \ c)\)

 • Put another way, equivalence relations check if operands are in the same *equivalence class*
Equivalence Classes

• Equivalence class: the set of elements that are all related to each other via an equivalence relation

• Due to transitivity, each member can only be a member of one equivalence class

• Thus, equivalence classes are **disjoint sets**

• Choose any distinct sets S and T, $S \cap T = \emptyset$
Disjoint Set ADT

- Collection of objects, each in an equivalence class
- \textbf{find}(x) returns the class of the object
- \textbf{union}(x,y) puts x and y in the same class
 - as well as every other relative of x and y
- Even less information than hash; no keys, no ordering
Implementation
Observations

• One simple implementation would be to store the class label for each element in an array

• $O(1)$ lookup for \texttt{find}, $O(N)$ for \texttt{union}

• If we store equivalent elements in linked lists, we avoid scanning the whole set during \texttt{union}

• We can change the labels of the smaller class
Data Structure

- Store elements in equivalence (general) trees
- Use the tree’s root as equivalence class label
- **find** returns root of containing tree
- **union** merges tree
- Since all operations only search up the tree, we can store in an array
Implementation

- Index all objects from 0 to N-1
- Store a parent array such that \(s[i] \) is the index of i’s parent
- If i is a root, store the negative size of its tree*
- **find** follows \(s[i] \) until negative, returns index
- **union**(x,y) points the root of x’s tree to the root of y’s tree
Analysis

- **find** costs the depth of the node
- **union** costs $O(1)$ after **finding** the roots
- Both operations depend on the height of the tree
- Since these are general trees, the trees can be arbitrarily shallow
Union by Size

• Claim: if we union by pointing the smaller tree to the larger tree’s root, the height is at most $\log N$

• Each union increases the depths of nodes in the smaller trees

• Also puts nodes from the smaller tree into a tree at least twice the size

• We can only double the size $\log N$ times
Union by Size Figure
Union by Height

- Similar method, attach the tree with less height to the taller tree
- Shorter tree’s nodes join a tree at least twice the height, overall height only increases if trees are equal height
Union by Height

Figure

1
b
c
a
d
e
g

2
f
e
d
b

2
f
d
b

a
c
d
g
Union by Height proof

• Induction: tree of height h has at least 2^h nodes

• Let T be tree of height h with least nodes possible via union operations

• At last union, T must have had height $h-1$, because otherwise, it would have been a smaller tree of height h

• Since the height was updated, T unioned with another tree of height $h-1$, each had at least 2^{h-1} nodes resulting in at least 2^h nodes for T
Path Compression

- Even if we have log N tall trees, we can keep calling `find` on the deepest node repeatedly, costing $O(M \log N)$ for M operations.

- Additionally, we will perform **path compression** during each `find` call.
 - Point every node along the find path to root.
Path Compression

Figure
Union by Rank

- Path compression messes up union-by-height because we reduce the height when we compress.
- We could fix the height, but this turns out to gain little, and costs **find** operations more.
- Instead, rename to **union by rank**, where **rank** is just an overestimate of height.
- Since heights change less often than sizes, rank/height is usually the cheaper choice.
Worst Case Bound

- The algorithms described have been proven to have worst case \(\Theta(M\alpha(M, N)) \)
 where \(\alpha \) is the inverse of Ackermann’s function:
 - \(A(1, j) = 2^j \)
 - \(A(i, 1) = A(i - 1, 2) \)
 - \(A(i, j) = A(i - 1, A(i, j - 1)) \)

- \(\alpha(M, N) = \min\{i \geq 1|A(i, \lfloor M/N \rfloor) > \log N\} \)
Worst Case Bound

- A slightly looser, but easier to prove/understand bound is that any sequence of operations will cost \(O(M \log^* N) \) running time.

- \(\log^* N \) is the number of times the logarithm needs to be applied to \(N \) until the result is \(\leq 1 \).

- e.g., \(\log^*(65536) = 4 \) because \(\log(\log(\log(\log(\log(65536)))))) = 1 \).
Log* Plots

- Top graph: Log* of x plotted against x.
 - Horizontal line at log*(x) = 4.

- Bottom graph: x plotted against log*(x) x 10^29.
 - Horizontal line at x = 0.

Axes:
- x-axis: 0 to 100
- y-axis (top graph): 0 to 5
- y-axis (bottom graph): 0 to 6
Log* Steps

<table>
<thead>
<tr>
<th>(\log^* N)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log^* N = 1)</td>
<td>(1, 2]</td>
</tr>
<tr>
<td>(\log^* N = 2)</td>
<td>(2, 4]</td>
</tr>
<tr>
<td>(\log^* N = 3)</td>
<td>(4, 16]</td>
</tr>
<tr>
<td>(\log^* N = 4)</td>
<td>(16, 65536]</td>
</tr>
<tr>
<td>(\log^* N = 5)</td>
<td>(65536, (2^{65536}])</td>
</tr>
</tbody>
</table>
Note about Kruskal’s

• With this bound, Kruskal’s algorithm needs N-1 unions, so it should cost almost linear time to perform unions

• Unfortunately the algorithm is still dominated by heap deleteMin calls, so asymptotic running time is still $O(E \log V)$
Reading

- Weiss 9.5 (MST)
- Weiss 8.1-8.5 (Disjoint Sets)