Data Structures In
Java

Session 18
Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134

Announcements

e Homework 4 due
e Homework 5 posted, due 11/24
e (Graph theory problems

e Programming: All-pairs shortest path

Review

e Shortest Path algorithms
e Breadth first search
e Dijkstra’s Algorithm
e All-Pairs Shortest Path

Today’s Plan

e Minimum Spanning Tree
e Prim’s Algorithm
e Kruskal's Algorithm

e Depth first search
e Fuler Paths

Minimum Spanning Tree
Problem definition

e (Given connected graph G, find the
connected, acyclic subgraph T with
minimum edge weight

e Atree that includes every node is
called a spanning tree

e The method to find the MST is another
example of a greedy algorithm

Motivation for Greed

Consider any spanning tree [%p\@
Adding another edge to the tree
creates exactly one cycle

Removing an edge from that cycle

restores the tree structure [&p% Q%pﬁ

Prim’s Algorithm

Grow the tree like Dijkstra’s Algorithm

Dijkstra’s: grow the set of vertices to
which we know the shortest path

Prim’s: grow the set of vertices we have
added to the minimum tree

Store shortest edge D[] from each
node to tree

Prim’s Algorithm

e Start with a single node tree, set distance of
adjacent nodes to edge weights, infinite
elsewhere

e Repeat until all nodes are in tree:

e Add the node v with shortest known
distance

e Update distances of adjacent nodes w:
D[w] = min(D[w], weight(v,w))

Implementation
Detalils

e Store “previous node” like Dijkstra’s Algorithm;
backtrack to construct tree after completion

e Of course, use a priority queue to keep track of
edge weights. Either

e Kkeep track of nodes inside heap &
decreaseKey

e or just add a new copy of the node when key
decreases, and call deleteMin until you see
a node not in the tree

Prim’s Algorithm
Justification

e At any point, we can consider the set of
nodes in the tree T and the set outside the
tree Q

e \Whatever the MST structure of the nodes in
Q, at least one edge must connect the MSTs
of T and Q

e The greedy edge is just as good structurally
as any other edge, and has minimum weight

Prim’s Running Time

e Each stage requires one deleteMin O
(log IVI]), and there are exactly |V]
stages

e \We update keys for each edge,
updating the key costs O(log IVI) (either
an insert or a decreaseKey)

o Total time: O(IVI log IVI + |El log IVI) =
O(IEl log IVI)

Kruskal’s Algorithm

e Somewhat simpler conceptually, but more
challenging to implement

e Algorithm: repeatedly add the shortest edge that
does not cause a cycle until no such edges
exist

e Each added edge performs a union on two
trees; perform unions until there is only one tree

e Need special ADT for unions
(Disjoint Set)

Kruskal’s Justification

e At each stage, the greedy edge e connects two
nodes v and w

e Eventually those two nodes must be
connected,;

e we must add an edge to connect trees
including v and w

e \We can always use e to connect v and w,

which must have less weight since it's the
greedy choice

Kruskal’s Running
Time
e First, buildHeap costs O(IEI)

e Fach edge, need to check if it creates a
cycle (costs O(log V))

e |n the worst case, we have to call |El
deleteMins |E| <| V|?

e Total running time O(lEIl log IEl); but
O(|E|log |V|*) = O(2|E|log|V]) = O(|E|log [V])

MST Summary

e Connect all nodes in graph using minimum
weight tree

e [Two greedy algorithms:
e Prim’s: similar to Dijkstra’s. Easier to code

o Kruskal’s: easy on paper

Disjoint Sets

Motivating Example

e One interpretation of Kruskal’s Algorithm:
e Think of trees as sets of connected nodes
e Merge sets by connecting nodes
e Never merge nodes that are in the same set

e Simple idea, but how can we implement it?

Equivalence
Relations

¢ An equivalence relation is a relation operator
that observes three properties:

e Reflexive: (a R a), for all a
e Symmetric: (aRDb) ifandonlyif (b R a)
e Transitive: (a R b) and (b R c¢) implies (a R ¢)

e Put another way, equivalence relations check if
operands are in the same equivalence class

Equivalence Classes

e Equivalence class: the set of elements that are
all related to each other via an equivalence
relation

e Due to transitivity, each member can only be a
member of one equivalence class

e Thus, equivalence classes are disjoint sets

e Choose any distinctsets Sand T, SNT =10

Disjoint Set ADT

Collection of objects, each in an equivalence
class

find(x) returns the class of the object
union(x,y) puts x and y in the same class
e as well as every other relative of x and y

Even less information than hash; no keys, no
ordering

Implementation
Observations

¢ One simple implementation would be to store the
class label for each element in an array

e O(1) lookup for find, O(N) for union

e |f we store equivalent elements in linked lists, we
avoid scanning the whole set during union

e \We can change the labels of the smaller class

Data Structure

Store elements in equivalence (general) trees
Use the tree’s root as equivalence class label
find returns root of containing tree

union merges tree

Since all operations only search up the tree, we
can store in an array

Implementation

Index all objects from O to N-1

Store a parent array such that s|i] is the index of
I's parent

If i IS a root, store the negative size of its tree”
find follows s[i] until negative, returns index

union(x,y) points the root of x’s tree to the root of
y’s tree

Analysis

find costs the depth of the node
union costs O(1) after finding the roots

Both operations depend on the height
of the tree

Since these are general trees, the trees
can be arbitrarily shallow

Union by Size

e Claim: if we union by pointing the smaller tree to
the larger tree’s root, the height is at most log N

e Each union increases the depths of nodes in the
smaller trees

e Also puts nodes from the smaller tree into a tree
at least twice the size

e \We can only double the size log N times

Union by Size Figure

:a o

Union by Height

e Similar method, attach the tree with less
height to the taller tree

e Shorter tree’s nodes join a tree at least
twice the height, overall height only
increases if trees are equal height

Uni
nion .by Height
Figure

Sog? g ¢

Union by Height proof

e Induction: tree of height h has at least 2" nodes

e |etT be tree of height h with least nodes possible
via union operations

e At last union, T must have had height h-1, because
otherwise, it would have been a smaller tree of
height h

e Since the height was updated, T unioned with
another tree of height h-1, each had at least 2"
nodes resulting in at least 2" nodes for T

Path Compression

e Fven if we have log N tall trees, we can
keep calling find on the deepest node
repeatedly, costing O(M log N) for M
operations

e Additionally, we will perform path
compression during each find call

e Point every node along the find path
to root

Path Compression
Figure

o o
odiadorofo
olo o

Union by Rank

Path compression messes up union-by-height
because we reduce the height when we compress

We could fix the height, but this turns out to gain
little, and costs find operations more

Instead, rename to union by rank, where rank is
just an overestimate of height

Since heights change less often than sizes,
rank/height is usually the cheaper choice

Worst Case Bound

e The algorithms described have been proven to
have worst case ©(Ma(M,N))
where « is the inverse of Ackermann’s function:

o A(l,j) = ¥
A(i,1) = A(i—1,2)
AGj) = Ali— 1A 1)

o a(M,N)=min{i > 1A, |M/N|) > log N}

Worst Case Bound

e A slightly looser, but easier to prove/understand
bound is that any sequence of M = Q(N)
operations will cost O(M log* N) running time

* |og* N is the number of times the logarithm
needs to be applied to N until the resultis <1

* e.9., log*(65536) = 4 because
log(log(log(log(65536)))) = 1

log™(x)

NN W A~ O

Log™ Plots

T T T T T T T T T
— XXXXHXXHXIHIHXIHXKHX KKK KX KHKIKI KK KK KK KK KHKHKHKK KK KK KK KHKKKIKIK KKK KKK HKIHXIHXIHX KKK HXIHXKHXKHX KKK XS
— XXXXXXKXXXKKX .
I I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
X
| | |
0 6 10 12
29

x 10

Log™ Steps

(1,2]
(2,4]

(4,16]

(16, 65536]

(65536, 2°°°3°]

Note about Kruskal’s

e With this bound, Kruskal’s algorithm needs
N-1 unions, so it should cost almost linear
time to perform unions

e Unfortunately the algorithm is still
dominated by heap deleteMin calls, so
asymptotic running time is still O(E log V)

Reading

e Weiss 9.5 (MST)
e Weiss 8.1-8.5 (Disjoint Sets)

