
Data Structures in
Java
Session 18

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134

Announcements

• Homework 4 due

• Homework 5 posted, due 11/24

• Graph theory problems

• Programming: All-pairs shortest path

Review

• Shortest Path algorithms

• Breadth first search

• Dijkstraʼs Algorithm

• All-Pairs Shortest Path

Todayʼs Plan

• Minimum Spanning Tree

• Primʼs Algorithm

• Kruskalʼs Algorithm

• Depth first search

• Euler Paths

Minimum Spanning Tree
Problem definition

• Given connected graph G, find the
connected, acyclic subgraph T with
minimum edge weight

• A tree that includes every node is
called a spanning tree

• The method to find the MST is another
example of a greedy algorithm

Motivation for Greed

• Consider any spanning tree

• Adding another edge to the tree
creates exactly one cycle

• Removing an edge from that cycle
restores the tree structure

Primʼs Algorithm
• Grow the tree like Dijkstraʼs Algorithm

• Dijkstraʼs: grow the set of vertices to
which we know the shortest path

• Primʼs: grow the set of vertices we have
added to the minimum tree

• Store shortest edge D[] from each
node to tree

Primʼs Algorithm
• Start with a single node tree, set distance of

adjacent nodes to edge weights, infinite
elsewhere

• Repeat until all nodes are in tree:

• Add the node v with shortest known
distance

• Update distances of adjacent nodes w:
D[w] = min(D[w], weight(v,w))

Implementation
Details

• Store “previous node” like Dijkstraʼs Algorithm;
backtrack to construct tree after completion

• Of course, use a priority queue to keep track of
edge weights. Either

• keep track of nodes inside heap &
decreaseKey

• or just add a new copy of the node when key
decreases, and call deleteMin until you see
a node not in the tree

Primʼs Algorithm
Justification

• At any point, we can consider the set of
nodes in the tree T and the set outside the
tree Q

• Whatever the MST structure of the nodes in
Q, at least one edge must connect the MSTs
of T and Q

• The greedy edge is just as good structurally
as any other edge, and has minimum weight

Primʼs Running Time
• Each stage requires one deleteMin O

(log |V|), and there are exactly |V|
stages

• We update keys for each edge,
updating the key costs O(log |V|) (either
an insert or a decreaseKey)

• Total time: O(|V| log |V| + |E| log |V|) =
O(|E| log |V|)

Kruskalʼs Algorithm
• Somewhat simpler conceptually, but more

challenging to implement

• Algorithm: repeatedly add the shortest edge that
does not cause a cycle until no such edges
exist

• Each added edge performs a union on two
trees; perform unions until there is only one tree

• Need special ADT for unions
(Disjoint Set)

Kruskalʼs Justification
• At each stage, the greedy edge e connects two

nodes v and w

• Eventually those two nodes must be
connected;

• we must add an edge to connect trees
including v and w

• We can always use e to connect v and w,
which must have less weight since it's the
greedy choice

Kruskalʼs Running
Time

• First, buildHeap costs O(|E|)

• Each edge, need to check if it creates a
cycle (costs O(log V))

• In the worst case, we have to call |E|
deleteMins

• Total running time O(|E| log |E|); but

|E| ≤| V |2

O(|E| log |V |2) = O(2|E| log |V |) = O(|E| log |V |)

MST Summary

• Connect all nodes in graph using minimum
weight tree

• Two greedy algorithms:

• Primʼs: similar to Dijkstraʼs. Easier to code

• Kruskalʼs: easy on paper

Disjoint Sets

Motivating Example

• One interpretation of Kruskalʼs Algorithm:

• Think of trees as sets of connected nodes

• Merge sets by connecting nodes

• Never merge nodes that are in the same set

• Simple idea, but how can we implement it?

Equivalence
Relations

• An equivalence relation is a relation operator
that observes three properties:

• Reflexive: (a R a), for all a

• Symmetric: (a R b) if and only if (b R a)

• Transitive: (a R b) and (b R c) implies (a R c)

• Put another way, equivalence relations check if
operands are in the same equivalence class

Equivalence Classes
• Equivalence class: the set of elements that are

all related to each other via an equivalence
relation

• Due to transitivity, each member can only be a
member of one equivalence class

• Thus, equivalence classes are disjoint sets

• Choose any distinct sets S and T, S ∩ T = ∅

Disjoint Set ADT
• Collection of objects, each in an equivalence

class

• find(x) returns the class of the object

• union(x,y) puts x and y in the same class

• as well as every other relative of x and y

• Even less information than hash; no keys, no
ordering

Implementation
Observations

• One simple implementation would be to store the
class label for each element in an array

• O(1) lookup for find, O(N) for union

• If we store equivalent elements in linked lists, we
avoid scanning the whole set during union

• We can change the labels of the smaller class

Data Structure
• Store elements in equivalence (general) trees

• Use the treeʼs root as equivalence class label

• find returns root of containing tree

• union merges tree

• Since all operations only search up the tree, we
can store in an array

Implementation
• Index all objects from 0 to N-1

• Store a parent array such that s[i] is the index of
iʼs parent

• If i is a root, store the negative size of its tree*

• find follows s[i] until negative, returns index

• union(x,y) points the root of xʼs tree to the root of
yʼs tree

Analysis

• find costs the depth of the node

• union costs O(1) after finding the roots

• Both operations depend on the height
of the tree

• Since these are general trees, the trees
can be arbitrarily shallow

Union by Size
• Claim: if we union by pointing the smaller tree to

the larger treeʼs root, the height is at most log N

• Each union increases the depths of nodes in the
smaller trees

• Also puts nodes from the smaller tree into a tree
at least twice the size

• We can only double the size log N times

Union by Size Figure

d

3

b

2

e

ca

d

3

b

eca

Union by Height

• Similar method, attach the tree with less
height to the taller tree

• Shorter treeʼs nodes join a tree at least
twice the height, overall height only
increases if trees are equal height

Union by Height
Figure

e

1
b

2
f

ca

gd

eb

2
f

ca gd

Union by Height proof
• Induction: tree of height h has at least nodes

• Let T be tree of height h with least nodes possible
via union operations

• At last union, T must have had height h-1, because
otherwise, it would have been a smaller tree of
height h

• Since the height was updated, T unioned with
another tree of height h-1, each had at least
nodes resulting in at least nodes for T

2h

2h−1

2h

Path Compression
• Even if we have log N tall trees, we can

keep calling find on the deepest node
repeatedly, costing O(M log N) for M
operations

• Additionally, we will perform path
compression during each find call

• Point every node along the find path
to root

Path Compression
Figure

b

d

ca

3

e

b dc

a

3

e

Union by Rank
• Path compression messes up union-by-height

because we reduce the height when we compress

• We could fix the height, but this turns out to gain
little, and costs find operations more

• Instead, rename to union by rank, where rank is
just an overestimate of height

• Since heights change less often than sizes,
rank/height is usually the cheaper choice

Worst Case Bound
• The algorithms described have been proven to

have worst case
where is the inverse of Ackermannʼs function:

•

•

Θ(Mα(M,N))
α

A(1, j) = 2j

A(i, 1) = A(i− 1, 2)
A(i, j) = A(i− 1, A(i, j − 1))

α(M,N) = min{i ≥ 1|A(i, �M/N�) > log N}

Worst Case Bound
• A slightly looser, but easier to prove/understand

bound is that any sequence of
operations will cost O(M log* N) running time

• log* N is the number of times the logarithm
needs to be applied to N until the result is

• e.g., log*(65536) = 4 because
log(log(log(log(65536)))) = 1

M = Ω(N)

≤ 1

Log* Plots

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

x

lo
g*
(x
)

0 2 4 6 8 10 12
x 1029

0

2

4

6

Log* Steps
N

log* N = 1

log* N = 2

log* N = 3

log* N = 4

log* N = 5

(1, 2]

(2, 4]

(4,16]

(16, 65536]

(65536,]265536

Note about Kruskalʼs

• With this bound, Kruskalʼs algorithm needs
N-1 unions, so it should cost almost linear
time to perform unions

• Unfortunately the algorithm is still
dominated by heap deleteMin calls, so
asymptotic running time is still O(E log V)

Reading

• Weiss 9.5 (MST)

• Weiss 8.1-8.5 (Disjoint Sets)

