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Announcements

• Homework 4 due

• Homework 5 posted

• All-pairs shortest paths



Review

• Graphs

• Topological Sort

• Print out a node with indegree 0,

• update indegrees



Todayʼs Plan

• Shortest Path algorithms

• Breadth first search

• Dijkstraʼs Algorithm

• All-Pairs Shortest Path



Shortest Path
• Given G = (V,E), and a node s   V, find 

the shortest (weighted) path from s to 
every other vertex in G.

• Motivating example: subway travel

• Nodes are junctions, transfer locations

• Edge weights are estimated time of 
travel

∈



Approximate MTA 
Express Stop Subgraph

• A few inaccuracies (donʼt use this to plan any trips)
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Breadth First Search
• Like a level-order traversal

• Find all adjacent nodes (level 1)

• Find new nodes adjacent to level 1 
nodes (level 2)

• ... and so on

• We can implement this with a queue



Unweighted Shortest 
Path Algorithm

• Set node sʼ distance to 0 and enqueue s. 

• Then repeat the following:

• Dequeue node v. For unset neighbor u:

• set neighbor uʼs distance to vʼs distance +1

• mark that we reached v from u

• enqueue u
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Weighted Shortest 
Path

• The problem becomes more difficult 
when edges have different weights

• Weights represent different costs on 
using that edge

• Standard algorithm is Dijkstraʼs 
Algorithm



Dijkstraʼs Algorithm
• Keep distance overestimates D(v) for each 

node v (all non-source nodes are initially 
infinite)

• 1. Choose node v with smallest unknown 
distance

• 2. Declare that vʼs shortest distance is 
known

• 3. Update distance estimates for neighbors



Updating Distances

• For each of vʼs neighbors, w,

• if min(D(v)+ weight(v,w),  D(w))

• i.e., update D(w) if the path going 
through v is cheaper than the best 
path so far to w
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Dijkstraʼs Algorithm 
Analysis

• First, convince ourselves that the algorithm 
works.

• At each stage, we have a set of nodes whose 
shortest paths we know

• In the base case, the set is the source node. 

• Inductive step: if we have a correct set, is 
greedily adding the shortest neighbor correct?



Proof by Contradiction 
(Sketch)

• Contradiction: Dijkstraʼs finds a shortest path to node 
w through v, but there exists an even shorter path

• This shorter path must pass from 
inside our known set to outside. 

• Call the 1st node in cheaper path 
outside our set u

• The path to u must be shorter than the path to w

• But then we would have chosen u instead
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Computational Cost

• If the graph is dense, we scan the 
vertices to find the minimum edge O(V)

• This happens |V| times

• We also update the distances once per 
edge, O(|E|)

• Thus, total running time is O(|E | + |V |2)



Computational Cost 
(sparse)

• Keep a priority queue of all unknown nodes

• Each stage requires a deleteMin, and then some 
decreaseKeys (the # of neighbors of node)

• We call decreaseKey once per edge, we call 
deleteMin once per vertex

• Both operations are O(log |V|)

• Total cost: O(|E| log |V| + |V| log |V|) = O(|E| log |V|)



All Pairs Shortest 
Path

• Dijkstraʼs Algorithm finds shortest paths from one 
node to all other nodes

• What about computing shortest paths for all pairs 
of nodes?

• We can run Dijkstraʼs |V| times. Total cost: 

• Floyd-Warshall algorithm is often faster in 
practice (though same asymptotic time)

O(|V |3)



Recursive Motivation
• Consider the set of numbered nodes 1 through k

• The shortest path between any node i and j using 
only nodes in the set {1, ..., k} is the minimum of

• shortest path from i to j using nodes {1, ..., k-1}

• shortest path from i to j using node k

• dist(i,j,k) = min( dist(i,j,k-1), 
                          dist(i,k,k-1)+dist(k,j,k-1) )



Dynamic Programming

• Instead of repeatedly computing recursive calls, 
store lookup table

• To compute dist(i,j,k) for any i,j, we only need to 
look up dist(-,-, k-1)

• but never k-2, k-3, etc.

• We can incrementally compute the path matrix for 
k=0, then use it to compute for k=1, then k=2...



Floyd-Warshall Code
•Initialize d = weight matrix

• for (k=0; k<N; k++) 
  for (i=0; i<N; i++) 
    for (j=0; j<N; j++) 
      if (d[i][j] > d[i][k]+d[k][j])
        d[i][j] = d[i][k] + d[k][j];

•Additionally, we can store the actual path by 
keeping a “midpoint” matrix



Midpoint Matrix

• We can store the N^2 paths efficiently with a 
midpoint matrix:

path(i,j) = path(i, midpoint[i][j]) +
                path(midpoint[i][j], j)

• We only need a NxN matrix to store all the 
paths



All Pairs Shortest 
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Transitive Closure
• For any nodes i, j, is there a path from i to j? 

• Instead of computing shortest paths, just compute 
Boolean if a path exists

• path(i,j,k) = path(i,j,k-1) OR 
                   path(i,k,k-1) AND path(k,j,k-1)

• Transitive closure can tell you whether a graph is 
connected



Reading

• Weiss Section 9.1-9.3, 

• Weiss Section 10.3.4 
(All-Pairs Shortest Path)


