
Data Structures in
Java
Session 17

Instructor: Bert Huang
http://www.cs.columbia.edu/~bert/courses/3134

Announcements

• Homework 4 due

• Homework 5 posted

• All-pairs shortest paths

Review

• Graphs

• Topological Sort

• Print out a node with indegree 0,

• update indegrees

Todayʼs Plan

• Shortest Path algorithms

• Breadth first search

• Dijkstraʼs Algorithm

• All-Pairs Shortest Path

Shortest Path
• Given G = (V,E), and a node s V, find

the shortest (weighted) path from s to
every other vertex in G.

• Motivating example: subway travel

• Nodes are junctions, transfer locations

• Edge weights are estimated time of
travel

∈

Approximate MTA
Express Stop Subgraph

• A few inaccuracies (donʼt use this to plan any trips)

116th
Broad.

96th
Broad.

72nd
Broad.

Times
Square

Grand
Central

59th
Lex.

86th
Lex.

Penn
Station

Port
Auth.

59th
Broad.

125th
and 8th

145th
and 8th

168th
Broad.

Breadth First Search
• Like a level-order traversal

• Find all adjacent nodes (level 1)

• Find new nodes adjacent to level 1
nodes (level 2)

• ... and so on

• We can implement this with a queue

Unweighted Shortest
Path Algorithm

• Set node sʼ distance to 0 and enqueue s.

• Then repeat the following:

• Dequeue node v. For unset neighbor u:

• set neighbor uʼs distance to vʼs distance +1

• mark that we reached v from u

• enqueue u

116th
Broad.

96th
Broad.

72nd
Broad.

Times
Square

Grand
Central

59th
Lex.

86th
Lex.

Penn
Station

Port
Auth.

59th
Broad.

125th
and 8th

145th
and 8th

168th
Broad.

168th
Broad.

145th
Broad.

125th
8th

59th
Broad.

Port
Auth.

116th
Broad.

96th
Broad.

72nd
Broad.

Times
Sq.

Penn
St.

86th
Lex.

59th
Lex.

Grand
Centr.

dist

prev

0

source

Weighted Shortest
Path

• The problem becomes more difficult
when edges have different weights

• Weights represent different costs on
using that edge

• Standard algorithm is Dijkstraʼs
Algorithm

Dijkstraʼs Algorithm
• Keep distance overestimates D(v) for each

node v (all non-source nodes are initially
infinite)

• 1. Choose node v with smallest unknown
distance

• 2. Declare that vʼs shortest distance is
known

• 3. Update distance estimates for neighbors

Updating Distances

• For each of vʼs neighbors, w,

• if min(D(v)+ weight(v,w), D(w))

• i.e., update D(w) if the path going
through v is cheaper than the best
path so far to w

72nd
Broad.

Times
Square

Penn
Station

Port Auth.
59th

Broad.

5

12
10

4

7

2

6

59th Broad. Port Auth. 72nd Broad Times Sq. Penn St.

inf inf inf inf 0

? ? ? ? home

Dijkstraʼs Algorithm
Analysis

• First, convince ourselves that the algorithm
works.

• At each stage, we have a set of nodes whose
shortest paths we know

• In the base case, the set is the source node.

• Inductive step: if we have a correct set, is
greedily adding the shortest neighbor correct?

Proof by Contradiction
(Sketch)

• Contradiction: Dijkstraʼs finds a shortest path to node
w through v, but there exists an even shorter path

• This shorter path must pass from
inside our known set to outside.

• Call the 1st node in cheaper path
outside our set u

• The path to u must be shorter than the path to w

• But then we would have chosen u instead

s

u

v w

?

...

...

Computational Cost

• If the graph is dense, we scan the
vertices to find the minimum edge O(V)

• This happens |V| times

• We also update the distances once per
edge, O(|E|)

• Thus, total running time is O(|E | + |V |2)

Computational Cost
(sparse)

• Keep a priority queue of all unknown nodes

• Each stage requires a deleteMin, and then some
decreaseKeys (the # of neighbors of node)

• We call decreaseKey once per edge, we call
deleteMin once per vertex

• Both operations are O(log |V|)

• Total cost: O(|E| log |V| + |V| log |V|) = O(|E| log |V|)

All Pairs Shortest
Path

• Dijkstraʼs Algorithm finds shortest paths from one
node to all other nodes

• What about computing shortest paths for all pairs
of nodes?

• We can run Dijkstraʼs |V| times. Total cost:

• Floyd-Warshall algorithm is often faster in
practice (though same asymptotic time)

O(|V |3)

Recursive Motivation
• Consider the set of numbered nodes 1 through k

• The shortest path between any node i and j using
only nodes in the set {1, ..., k} is the minimum of

• shortest path from i to j using nodes {1, ..., k-1}

• shortest path from i to j using node k

• dist(i,j,k) = min(dist(i,j,k-1),
 dist(i,k,k-1)+dist(k,j,k-1))

Dynamic Programming

• Instead of repeatedly computing recursive calls,
store lookup table

• To compute dist(i,j,k) for any i,j, we only need to
look up dist(-,-, k-1)

• but never k-2, k-3, etc.

• We can incrementally compute the path matrix for
k=0, then use it to compute for k=1, then k=2...

Floyd-Warshall Code
•Initialize d = weight matrix

• for (k=0; k<N; k++)
 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 if (d[i][j] > d[i][k]+d[k][j])
 d[i][j] = d[i][k] + d[k][j];

•Additionally, we can store the actual path by
keeping a “midpoint” matrix

Midpoint Matrix

• We can store the N^2 paths efficiently with a
midpoint matrix:

path(i,j) = path(i, midpoint[i][j]) +
 path(midpoint[i][j], j)

• We only need a NxN matrix to store all the
paths

All Pairs Shortest
Path Example
1 2 3 4

1
2
3
4

- 4 - -
- - 3 1
2 - - 4
- - 2 -

1

2

3

4

4

2

1

4
3

2

k=0

Transitive Closure
• For any nodes i, j, is there a path from i to j?

• Instead of computing shortest paths, just compute
Boolean if a path exists

• path(i,j,k) = path(i,j,k-1) OR
 path(i,k,k-1) AND path(k,j,k-1)

• Transitive closure can tell you whether a graph is
connected

Reading

• Weiss Section 9.1-9.3,

• Weiss Section 10.3.4
(All-Pairs Shortest Path)

