Announcements

- Homework 4 due
- Homework 5 posted
 - All-pairs shortest paths
Review

- Graphs
- Topological Sort
 - Print out a node with indegree 0,
 - update indegrees
Today’s Plan

• Shortest Path algorithms
• Breadth first search
• Dijkstra’s Algorithm
• All-Pairs Shortest Path
Shortest Path

• Given $G = (V,E)$, and a node $s \in V$, find the shortest (weighted) path from s to every other vertex in G.

• Motivating example: subway travel
 • Nodes are junctions, transfer locations
 • Edge weights are estimated time of travel
Approximate MTA Express Stop Subgraph

- A few inaccuracies (don’t use this to plan any trips)
Breadth First Search

- Like a level-order traversal
- Find all adjacent nodes (level 1)
- Find new nodes adjacent to level 1 nodes (level 2)
- ... and so on
- We can implement this with a queue
Unweighted Shortest Path Algorithm

• Set node s' distance to 0 and enqueue s.

• Then repeat the following:
 • Dequeue node v. For unset neighbor u:
 • set neighbor u’s distance to v’s distance +1
 • mark that we reached v from u
 • enqueue u
The diagram shows a network of transportation hubs in New York City, including:

- 168th Broad.
- 145th and 8th
- 125th and 8th
- 59th Broad.
- Port Auth.
- 116th Broad.
- 96th Broad.
- 72nd Broad.
- Times Square
- Penn Station
- 86th Lex.
- 59th Lex.
- Grand Central

The table below lists the distances and previous stops for various routes:

<table>
<thead>
<tr>
<th></th>
<th>168th Broad.</th>
<th>145th Broad.</th>
<th>125th Broad.</th>
<th>59th Broad.</th>
<th>Port Auth.</th>
<th>116th Broad.</th>
<th>96th Broad.</th>
<th>72nd Broad.</th>
<th>Times Square</th>
<th>Penn St.</th>
<th>86th Lex.</th>
<th>59th Lex.</th>
<th>Grand Centr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The diagram shows a network of connections between various locations:

- **168th Broad.**
- **145th and 8th**
- **125th Broad.**
- **59th Broad.**
- **Port Auth.**
- **116th Broad.**
- **96th Broad.**
- **72nd Broad.**
- **Times Square**
- **Penn Station**
- **86th Lex.**
- **59th Lex.**
- **Grand Central**
- **125th and 8th**
- **Port Auth.**
- **Penn Station**
- **72nd Broad.**

The table below represents the distances and previous locations:

<table>
<thead>
<tr>
<th></th>
<th>168th Broad.</th>
<th>145th and 8th</th>
<th>125th Broad.</th>
<th>59th Broad.</th>
<th>Port Auth.</th>
<th>116th Broad.</th>
<th>96th Broad.</th>
<th>72nd Broad.</th>
<th>Times Square</th>
<th>Penn Station</th>
<th>86th Lex.</th>
<th>59th Lex.</th>
<th>Grand Centr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>168th Broad.</td>
<td>145th and 8th</td>
<td>125th and 8th</td>
<td>59th Broad.</td>
<td>Port Auth.</td>
<td>116th Broad.</td>
<td>96th Broad.</td>
<td>72nd Broad.</td>
<td>Times Square</td>
<td>Penn Station</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>168th Broad.</td>
<td>145th and 8th</td>
<td>125th and 8th</td>
<td>59th Broad.</td>
<td>Port Auth.</td>
<td>116th Broad.</td>
<td>96th Broad.</td>
<td>72nd Broad.</td>
<td>Times Square</td>
<td>Penn Station</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dist</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prev</td>
<td>125th and 8th</td>
<td>59th Broad.</td>
<td>Times Sq.</td>
<td>Times Sq.</td>
<td>96th Broad.</td>
<td>72nd Broad.</td>
<td>Times Sq.</td>
<td>source</td>
<td>Times Sq.</td>
<td>59th Lex.</td>
<td>Grand Centr.</td>
<td>Times Sq.</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
Weighted Shortest Path

- The problem becomes more difficult when edges have different weights
- Weights represent different costs on using that edge
- Standard algorithm is Dijkstra’s Algorithm
Dijkstra’s Algorithm

- Keep distance overestimates $D(v)$ for each node v (all non-source nodes are initially infinite)
- 1. Choose node v with smallest *unknown* distance
- 2. Declare that v’s shortest distance is *known*
- 3. Update distance estimates for neighbors
Updating Distances

- For each of v’s neighbors, w,
- if \(\min(D(v) + \text{weight}(v,w), D(w)) \)
- i.e., update $D(w)$ if the path going through v is cheaper than the best path so far to w
<table>
<thead>
<tr>
<th>59th Broad.</th>
<th>Port Auth.</th>
<th>72nd Broad</th>
<th>Times Sq.</th>
<th>Penn St.</th>
</tr>
</thead>
<tbody>
<tr>
<td>inf</td>
<td>6</td>
<td>inf</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>Penn St.?</td>
<td>?</td>
<td>Penn St.?</td>
<td>home</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Analysis

- First, convince ourselves that the algorithm works.
- At each stage, we have a set of nodes whose shortest paths we know.
- In the base case, the set is the source node.
- Inductive step: if we have a correct set, is greedily adding the shortest neighbor correct?
Proof by Contradiction (Sketch)

- Contradiction: Dijkstra’s finds a shortest path to node \(w \) through \(v \), but there exists an even shorter path.

- This shorter path must pass from inside our known set to outside.

- Call the 1st node in cheaper path outside our set \(u \).

- The path to \(u \) must be shorter than the path to \(w \).

- But then we would have chosen \(u \) instead.
Computational Cost

- If the graph is dense, we scan the vertices to find the minimum edge $O(V)$
- This happens $|V|$ times
- We also update the distances once per edge, $O(|E|)$
- Thus, total running time is $O(|E| + |V|^2)$
Computational Cost (sparse)

• Keep a priority queue of all unknown nodes
• Each stage requires a deleteMin, and then some decreaseKeys (the # of neighbors of node)
• We call decreaseKey once per edge, we call deleteMin once per vertex
• Both operations are $O(\log |V|)$
• Total cost: $O(|E| \log |V| + |V| \log |V|) = O(|E| \log |V|)$
All Pairs Shortest Path

- Dijkstra’s Algorithm finds shortest paths from one node to all other nodes
- What about computing shortest paths for all pairs of nodes?
- We can run Dijkstra’s |V| times. Total cost: $O(|V|^3)$
- Floyd-Warshall algorithm is often faster in practice (though same asymptotic time)
Recursive Motivation

- Consider the set of numbered nodes 1 through k
- The shortest path between any node i and j using only nodes in the set \{1, ..., k\} is the minimum of
 - shortest path from i to j using nodes \{1, ..., k-1\}
 - shortest path from i to j using node k
- \(\text{dist}(i,j,k) = \min(\text{dist}(i,j,k-1), \text{dist}(i,k,k-1)+\text{dist}(k,j,k-1)) \)
Dynamic Programming

- Instead of repeatedly computing recursive calls, store lookup table
- To compute dist(i,j,k) for any i,j, we only need to look up dist(-,-, k-1)
 - but never k-2, k-3, etc.
- We can incrementally compute the path matrix for k=0, then use it to compute for k=1, then k=2...
Floyd-Warshall Code

• Initialize \(d = \) weight matrix

• for (k=0; k<N; k++)
 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 if (\(d[i][j] > d[i][k] + d[k][j] \))
 \(d[i][j] = d[i][k] + d[k][j] \);

• Additionally, we can store the actual path by keeping a “midpoint” matrix
Midpoint Matrix

- We can store the N^2 paths efficiently with a midpoint matrix:

 \[
 \text{path}(i,j) = \text{path}(i, \text{midpoint}[i][j]) + \\
 \text{path}(\text{midpoint}[i][j], j)
 \]

- We only need a $N \times N$ matrix to store all the paths
All Pairs Shortest Path Example

$k=0$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Graph representation:
All Pairs Shortest Path Example

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & - & 4 & - & - \\
2 & - & - & 3 & 1 \\
3 & 2 & - & - & 4 \\
4 & - & - & 2 & - \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & - & 4 & - & - \\
2 & - & - & 3 & 1 \\
3 & 2 & 6 & - & 4 \\
4 & - & - & 2 & - \\
\end{array}
\]
All Pairs Shortest Path Example

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & - & 4 & - & - \\
2 & - & - & 3 & 1 \\
3 & 2 & 6 & - & 4 \\
4 & - & - & 2 & - \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & - & 4 & 7 & 5 \\
2 & - & - & 3 & 1 \\
3 & 2 & 6 & 9 & 4 \\
4 & - & - & 2 & - \\
\end{array}
\]
All Pairs Shortest Path Example

$k=2$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

$k=3$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
All Pairs Shortest Path Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

k=3

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

k=4
Transitive Closure

• For any nodes i, j, is there a path from i to j?
• Instead of computing shortest paths, just compute Boolean if a path exists

\[\text{path}(i,j,k) = \text{path}(i,j,k-1) \text{ OR } \text{path}(i,k,k-1) \text{ AND } \text{path}(k,j,k-1) \]

• Transitive closure can tell you whether a graph is connected
Reading

• Weiss Section 9.1-9.3,

• Weiss Section 10.3.4 (All-Pairs Shortest Path)